
An Intermediate Language for Efficient Interpretation of
Implicitly Modular Structural Operational Semantics

L. Thomas van Binsbergen
Royal Holloway,

University of London
ltvanbinsbergen@acm.org

Neil Sculthorpe
Nottingham Trent University

neil.sculthorpe@ntu.ac.uk

Adrian Johnstone
Royal Holloway,

University of London
a.johnstone@rhul.ac.uk

Elizabeth Scott
Royal Holloway,

University of London
e.scott@rhul.ac.uk

ABSTRACT
Structural Operational Semantics (SOS) is a well-established
framework for specifying the semantics of programming lan-
guages. Implicitly Modular SOS (I-MSOS) is a variant of
SOS that has recently been used as the basis for several
formal specification languages, including CBS and DynSem.
These specification languages are intended to be executable:
it should be possible to generate a reference interpreter for a
programming language from the inference rules that specify
its semantics.

The topic of this paper is the efficient implementation of I-
MSOS rules. Our approach is to compile I-MSOS rules from
different specification languages to a common intermediate
language (IML). IML is a lower level language, designed to
facilitate refactoring and optimisation. Sets of IML rules
can then be compiled to produce a reference interpreter for
the programming language specified by the original I-MSOS
rules.

In this paper we motivate and present IML, together with
a reference interpreter for IML itself. We also define a com-
pilation scheme from declarative I-MSOS rules to IML, and
discuss the key optimisations IML supports.

1. INTRODUCTION
Structural Operational Semantics (SOS) [24] is a frame-

work for specifying computational behaviour, where the be-
haviour of a program is specified by transition relations be-
tween program terms, defined inductively by inference rules
and axioms. The transition relations used in SOS are typ-
ically augmented with auxiliary semantic entities, such as
environments, stores or signals, which are used to model
computational side-effects.

IFL ’16 August 31 – September 2, 2016, Leuven, Belgium

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Modular Structural Operational Semantics (MSOS) [16,
17] is a variant of SOS that allows the semantics of a pro-
gramming construct to be specified independently of any se-
mantic entities with which it does not directly interact. For
example, the semantics of function application can be spec-
ified by MSOS rules without mentioning stores or output,
even if the transition rules for other constructs in the same
language specification do modify a store or emit output.

Implicitly Modular SOS (I-MSOS) [18] is a variant of
MSOS that has a notational style similar to conventional
SOS; it can be viewed as syntactic sugar for MSOS. Sev-
eral formal specification languages are based on I-MSOS,
including CBS [30], the specification language used by the
Funcon Framework [9], and DynSem [31], the language for
dynamic semantics used in the Spoofax Language Work-
bench [13]. CBS and DynSem specifications are intended
to be executable, which enables programming-language de-
signers to run test programs and validate their specifications
as part of the design process.

The topic of this paper is the efficient implementation of
sets of I-MSOS rules. In particular, our approach is to com-
pile I-MSOS–based specifications to a common intermediate
language (IML), and to apply optimisations to IML specifi-
cations. Optimised IML specifications are then used to gen-
erate interpreters for the programming language specified by
the original I-MSOS–based specification. Our intermediate
language consists of two levels:

• The IML Rule Format, a high-level representation of I-
MSOS rules. It serves as the source of an IML compiler
which translates instances of the IML Rule Format into
the low-level IML language.

• IML, a lower level language that models I-MSOS rules
as sequences of statements. Its purpose is to facilitate
refactoring and optimisation.

Our approach has a number of benefits:

• The optimisations are independent of any source speci-
fication language and target host language, giving them
strong potential for reuse.

• For expressing and reasoning about optimisations, IML
is a more suitable object language than the existing

C : command ::= C ; C
| R := E
| print E
| while E do C od
| D

D : done ::= done

E : expr ::= plus E E | leq E E | V
V : value ::= false | true | I | R
I : integer ::= . . .

R : reference ::= . . .

Figure 1: Grammar for a small While language.

declarative specification languages, as rules are repre-
sented by statements with an explicit flow of control.

• I-MSOS rules from any I-MSOS–based formal specifi-
cation language can be implemented (or even defined)
simply by giving a translation to the IML Rule Format.

The focus of this paper is on the two levels of our interme-
diate language. In particular, we discuss the distinguishing
aspects of the IML Rule Format in comparison to I-MSOS,
and the operational semantics of IML programs, presented
in Sections 3 and 4 respectively. A scheme translating in-
stances of rule format into IML code is given in Section 4.2.
The potential of IML with respect to code optimisations is
discussed in Section 5.

A detailed exploration of optimisations on IML programs,
and an analysis of the efficiency gains they bring in practice,
will be the topic of a subsequent paper.

2. BACKGROUND
This section provides an overview of SOS and I-MSOS,

and introduces the running example we will use throughout
the paper, which we have adapted from [3]. We assume the
reader has some familiarity with SOS, for example [3, 24].

2.1 Structural Operational Semantics
Consider the While language presented in Figure 1, which

is a simple imperative language of commands and expres-
sions. Note that special syntactic sort done would not typi-
cally be part of the source-language grammar, but is added
to the semantic specification as a means of denoting a ter-
minated computation.

Figures 2 and 3 contain SOS axioms and inference rules
(both referred to as rules) that define transition relations
expressing the execution of commands and the evaluation of
expressions, respectively. The conclusion of each rule con-
tains an instance of the transition relation being defined,
whereas the premise(s) of each rule may contain instances
of the same or other transition relations. SOS rules may
also have side conditions that restrict their applicability, or
perform some meta-level operations such as integer addition
(Rule 8).

As well as relating program terms, SOS transition rela-
tions may also involve auxiliary semantic entities that facil-
itate expressing the semantics of computational side effects.
In this case, the rules make use of a store that contains the

〈C, σ〉 α−→ 〈C, σ〉

〈C1, σ〉
α−→ 〈C′1, σ′〉

〈C1 ; C2, σ〉
α−→ 〈C′1 ; C2, σ′〉

(1)

〈done ; C2, σ〉
[]−→ 〈C2, σ〉 (2)

σ ` E ⇓ V

〈R := E, σ〉 []−→ 〈done, σ[R 7→ V]〉
(3)

σ ` E ⇓ V

〈print E, σ〉 [V]−−→ 〈done, σ〉
(4)

σ ` E ⇓ false

〈while E do C od, σ〉 []−→ 〈done, σ〉
(5)

σ ` E ⇓ true

〈while E do C od, σ〉 []−→ 〈C ; while E do C od, σ〉
(6)

Figure 2: SOS small-step rules for commands.

σ ` E ⇓ V

V ⇓ V (7)

σ ` E1 ⇓ I1 σ ` E2 ⇓ I2
σ ` plus E1 E2 ⇓ I3

(I3=I1+I2) (8)

σ ` E1 ⇓ I1 σ ` E2 ⇓ I2
σ ` leq E1 E2 ⇓ true

(I16I2) (9)

σ ` E1 ⇓ I1 σ ` E2 ⇓ I2
σ ` leq E1 E2 ⇓ false

(I1 66I2) (10)

σ ` R ⇓ V (V=σ(R)) (11)

Figure 3: SOS big-step rules for expressions.

〈C, σ〉 α=⇒ 〈D,σ〉

〈done, σ〉 []
=⇒ 〈done, σ〉 (12)

〈C, σ〉 α−→ 〈C′, σ′〉 〈C′, σ′〉 β
=⇒ 〈done, σ′′〉

〈C, σ〉 α++β
===⇒ 〈done, σ′′〉

(13)

Figure 4: SOS repeated small-step transitions.

contents of mutable references, and an output signal con-
taining a list of printed values. We have used Greek letters
as meta-variables ranging over semantic entities (σ for stores
and α, β for output signals), and capitalised Roman letters
as meta-variables ranging over While-language terms.

The box at the top of each figure contains a template for
the relation being defined. The template for the ‘→’ relation
expresses that it relates a command/store pair to another
command/store pair, as well as to an output signal. The
first pair represents the program term and store contents
before the transition, while the second pair represents the
program term and store contents after the transition. The
output signal represents the list of values printed during the
transition (if any).

The template for the ‘⇓’ relation expresses that it relates
an expression, store and value. This represents the expres-
sion being evaluated, the store contents during that evalua-
tion, and the resulting value. Notice the different treatment
of the store in the two relations: when executing commands
the store can be updated, and hence there is an initial and
resulting store in each rule; whereas when evaluating expres-
sions the contents of the store can be read but not modified,
so there need only be one store in the relation.

The rules defining the execution of commands are ex-
pressed in the small-step [24] style, whereas the rules defin-
ing evaluation of expressions are expressed in the big-step [12]
style. To model a complete run of a While program, we
introduce a third relation (Figure 4) representing repeated
iteration of the small-step relation.

2.2 Implicitly Modular SOS
A transition relation in SOS involves a fixed set of auxil-

iary semantic entities, distinguished by where they appear
syntactically in the transition (such as before the turnstile,
or above the arrow). The key distinction of I-MSOS is that
arbitrary semantic entities may be included or omitted when
writing a rule. Any omitted semantic entities are implicitly
propagated between the premise(s) and conclusion. This al-
lows semantic entities that do not interact with the program-
ming construct being specified to be omitted from the rule,
leading to clearer and more concise specifications. Further-
more, this makes I-MSOS rules modular : rules that mention
some semantic entities can be combined with rules that men-
tion different semantic entities, and the unmentioned entities
are implicitly propagated.

I-MSOS classifies semantic entities into three kinds:

• Read-only entities, which represent inputs to a tran-
sition (e.g. an environment). If a read-only entity is
omitted from a rule, then it is implicitly propagated
from the conclusion to the premises (if any).

• Write-only entities, which represent lists of output from
a transition (e.g. printed values). If a write-only en-
tity is omitted from a rule, then the outputs of the
premises are concatenated together to form the out-
put of the conclusion.

• Read-write entities, which represent states that are
mutated by a transition (e.g. a store). If a read-write
entity is omitted from a rule, then it is “threaded”
through the premises of the rule from left to right,
with the initial value of the conclusion being the ini-
tial value of the first premise, and the resulting value of
the final premise the resulting value of the conclusion.

C1 −→ C′1
C1 ; C2 −→ C′1 ; C2

(14)

done;C2 −→ C2 (15)

env(σ) ` E ⇓ V
〈R := E, store(σ)〉 −→ 〈done, store(σ[R 7→ V])〉 (16)

env(σ) ` E ⇓ V

〈print E, store(σ)〉 out([V])−−−−−→ 〈done, store(σ)〉
(17)

env(σ) ` E ⇓ false

〈while E do C od, store(σ)〉 → 〈done, store(σ)〉 (18)

env(σ) ` E ⇓ true

〈while E do C od, store(σ)〉 →
〈C ; while E do C od, store(σ)〉

(19)

Figure 5: I-MSOS small-step rules for commands.

V ⇓ V (20)

E1 ⇓ I1 E2 ⇓ I2
plus E1 E2 ⇓ I3

(I3=I1+I2) (21)

E1 ⇓ I1 E2 ⇓ I2
leq E1 E2 ⇓ true

(I16I2) (22)

E1 ⇓ I1 E2 ⇓ I2
leq E1 E2 ⇓ false

(I1 66I2) (23)

env(σ) ` R ⇓ V (V=σ(R)) (24)

Figure 6: I-MSOS big-step rules for expressions.

done⇒ done (25)

C → C′ C′ ⇒ done

C ⇒ done
(26)

Figure 7: I-MSOS repeated small-step transitions.

Interpreting I-MSOS rules operationally, these propagation
schemes correspond to those of a reader, writer and state
monad [34]. As examples, figures 5–7 present I-MSOS
equivalents of the SOS rules in figures 2–4, respectively.

For consistency with SOS, an I-MSOS transition is written
with read-only entities before the turnstile symbol, write-
only entities above the arrow, and read-write entities paired
with the program term. However, unlike SOS, an I-MSOS
rule can contain an arbitrary number of comma-separated
entities in each of these positions. For example, a specifica-
tion of a programming language may use additional write-

relation(→)

relation(⇓,val-reflexive)

entity(env,ro, map-empty)

entity(store,rw, map-empty)

entity(out,wo)

Figure 8: IML declarations.

only entities to model throwing exceptions or other forms of
abnormal control-flow (see e.g. [26]). An SOS specification
would have to change the syntax of the transition relation,
and hence all existing rules, to permit additional entities.

To allow multiple semantic entities in the same position
to be distinguished, any semantic entities in an I-MSOS
transition relation are tagged with a name (store and out
in Figure 5; env in Figure 6). To enable further conciseness,
I-MSOS allows the turnstile symbol to be omitted if there
are no explicit read-only entities, and the pairing brackets
to be omitted if there are no explicit read-write entities.

3. RULE FORMAT
This section defines the IML Rule Format, which decides

on a concrete treatment of particular abstract aspects of I-
MSOS rules, e.g. meta-operations and side-conditions, per-
mitting executable rules. We further define inference rule-
based IML specifications. We accompany the precise math-
ematical definitions with Haskell (data) types. The Haskell
types cannot be expected to be as precise. For example,
values are defined as a synonym for terms, ignoring the con-
straints placed on values by the mathematical definition.

The IML Rule Format serves as an intermediate form in
a mechanical translation of I-MSOS rules into interpreters
and is intended as a target for compiling inference rules de-
veloped in the CBS and DynSem specification languages.
We expect many SOS specifications may be written as IML
specifications as well, for example those found in [3, 15], and
can thus be made executable.

3.1 Terms and Expressions
When defining a formal semantics for a programming lan-

guage, we distinguish between the object language, which
is the programming language being defined by means of a
specification, and the meta-language, which is the language
being used to express the semantics of the object language.
This section describes a minimal meta-language, on top of
the IML Rule Format. We will continue to use the While
language as an example object language. We refer to the
variables of a meta-language as meta-variables and reserve
‘variables’ for variables of the object language.

A rule-based IML specification Φ contains meta-variables
X(Φ); constructors F (Φ), with an associated arity n > 0;
a nominated set of value constructors FV (Φ) ⊂ F (Φ); a
set of operator names O(Φ); a set of relation symbols R(Φ),
with an associated set of predicates; a set of entity identi-
fiers E(Φ), with an associated direction ro (read-only), wo
(write-only), or rw (read-write), and an associated operator
name (providing a default value); and a set of inference rules.
The constructors F (Φ) \ FV (Φ) are refered to as computa-
tion constructors. Sets X(Φ), F (Φ), O(Φ), and R(Φ) are
pairwise disjoint. The specification’s inference rules must

C1 −→ C′1
seq(C1, C2) −→ seq(C′1, C2)

(27)

seq(done, C2) −→ C2 (28)

env(σ1) ` E ⇓ V map-insert(σ1, R, V) B σ2

〈assign(R,E), store(σ1)〉 −→ 〈done, store(σ2)〉 (29)

env(σ) ` E ⇓ V

〈print(E), store(σ)〉 out([V])−−−−−→ 〈done, store(σ)〉
(30)

env(σ) ` E ⇓ false

〈while(E,C), store(σ)〉 −→ 〈done, store(σ)〉 (31)

env(σ) ` E ⇓ true

〈while(E,C), store(σ)〉 −→ 〈seq(C,while(E,C)), store(σ)〉
(32)

Figure 9: IML small-step rules for commands.

E1 ⇓ I1 E2 ⇓ I2 plus(I1, I2) B I3
plus(E1, E2) ⇓ I3

(33)

E1 ⇓ I1 E2 ⇓ I2 is-leq(I1, I2) B true

leq(E1, E2) ⇓ true
(34)

E1 ⇓ I1 E2 ⇓ I2 is-leq(I1, I2) B false

leq(E1, E2) ⇓ false
(35)

map-lookup(R, σ) B V
env(σ) ` ref (R) ⇓ V (36)

Figure 10: IML big-step rules for expressions.

be instances of the IML Rule Format defined in the remain-
der of this section.

Figures 8, 9 and 10 present an IML specification for the
While language. The IML rules are similar to the I-MSOS
rules in Figures 5 and 6, but program fragments are rep-
resented by terms rather than syntactically. Operations on
values have been given names shown in typewriter font.
Value operations appear on the left-hand side of the B oper-
ator used for side-conditions and pattern-matching. Con-
structors are written in italics and value constructors in
boldface. Meta-variables are optionally subscripted Greek
letters or Roman capitals. Rules (20), (25), and (26) appear
to be missing. As we shall see later, these rules are implicitly
active following from the relation declarations of Figure 8.

Definition 3.1. A term is either a meta-variable x ∈ X(Φ),
or the application of a constructor f ∈ F (Φ) to n terms,
denoted by f(x1, . . . , xn), with n > 0 is the arity of f . The
set of Φ-terms is denoted T (Φ). A term is said to be open
if it contains meta-variables, and closed otherwise.

Definition 3.2. Values are terms whose outermost con-
structor (if any) is a value constructor f ∈ FV (Φ). The set

of Φ-values is denoted V (Φ), a subset of T (Φ).

Example (open) terms for representing While programs
are while(leq(“x”, X), assign(Y, 10)), in which “x” and 10 are
values (variable and integer, respectively) and X, Y are
meta-variables. An example of a closed term is assign(“x”, 10).

Terms are represented by the following Haskell types:

data T = TVar X
| TCons Bool F [T]

type F = String
type X = String
type V = T

type R = String
type E = String
type O = String

The Boolean flag of TCons indicates whether the con-
structor is a value constructor or not.

SOS and I-MSOS specifications typically make use of ob-
jects and operations from established mathematical frame-
works, particularly for providing values and operations on
values. For example Rules (21), (22), (16), and (36), perform
integer addition, integer comparison, map insertion and map
lookup, respectively. The semantics of value operations are
assumed and not always given as part of a specification. The
set O(Φ) contains the names of the value operations used
by IML specification Φ. An interpreter for the object lan-
guage defined by Φ has to provide implementations for the
operations in O(Φ). In the IML rules for While, we use the
names plus, is-leq, and map-lookup among others.

Definition 3.3. An operator expression (or expression) is
either a value, or the application of an operator name o ∈
O(Φ) to a sequence of expressions, denoted by o(e1, . . . , en).

type Exprs = [Expr]
data Expr = Val V

| Op O [Expr]

Pattern matching is a common concept in declarative pro-
gramming languages. A term is matched against a pattern
in order to deconstruct it, binding variables to the term’s
components. IML provides pattern matching at the meta-
level, allowing object-language terms to be bound to meta-
variables in a meta-environment. Following [8], we only al-
low values to be deconstructed; non-value terms can only be
matched to meta-variables.

Definition 3.4. A pattern is a term in which all construc-
tors are value constructors and in which no meta-variable
occurs more than once. The set of Φ-patterns is denoted
P (Φ), a subset of T (Φ).

data P = PVar X
| PCons F [P]

3.2 Rule Representation
I-MSOS rules may have side-conditions, such as ‘I1 6 I2’

in Rule (22). In IML rules side-conditions appear as e B p,
with e an expression and p a pattern. A side-condition is
satisfied if e evaluates (Section 4.1.5) to a value matching p.

Definition 3.5. A side-condition is a pair (e, p), denoted
as e B p, with e an expression and p a pattern.

data SideCon = SideCon Expr P

The inference rules of an IML specification define the rela-
tions identified by the relation symbols in R(Φ).

Based on the following inference rules, we obtain a defini-
tion for the ‘iterative version’ ∗ of any relation ∈ R(Φ).

is-value(V0) B true

V0 ∗ V0
(37)

is-value(T0) B false T0 T1 T1 ∗ V2

T0 ∗ V2
(38)

These IML rules are implicitly present in any IML spec-
ification. Other rules can be made available by associating
predicates with relation symbols. For example, the ‘⇓’ rela-
tion is declared to be reflexive on values see (Figure 8), thus
enabling the IML variant of I-MSOS Rule (20):

is-value(V) B true

V ⇓ V (39)

Recall that an entity identifier is associated with a direc-
tion and a default value provided as an operation name.

data Decls = RODecl E O
| RWDecl E O
| WODecl E -- default is [] (see 4.1)
| RelDecl R [Predicate]

data Predicate = ValReflexive | ...

A reference to a read-only or write-only entity in a transi-
tion is either an access or an update, which is a pair (eid , p)
or a pair (eid , t), respectively (for eid ∈ E(Φ), p ∈ P (Φ), t ∈
T (Φ)). Read-only entities are accessed in the conclusion of
a rule, where they are matched against a pattern, and up-
dated in the premise of a rule, where they are set to a term.
Conversely, write-only entities are accessed in a premise and
updated in the conclusion.

A reference to a read-write entity is always both an access
and an update, and is either a triple (eid , p, t) in a conclusion
(the access is on the left-hand side of the transition and the
update is on the right-hand side) or a triple (eid , t, p) in a
premise (the update is on the left-hand side and the access is
on the right-hand side). For consistency with read-only and
write-only entities we refer to the former as read-write ac-
cesses and to the latter as read-write updates. The premise
of Rule (31) is prefixed by read-only update (env, σ), while
the conclusion contains a read-write access (store, σ, σ).

type AcRO = (E ,P)

type UpRO = (E ,T)

type AcWO = (E ,P)

type UpWO = (E ,T)

type AcRW = (E ,P ,T)

type UpRW = (E ,T ,P)

We define the conclusion of an IML rule as a sextuple
(p, r, t, ro, rw ,wo); with p, t ∈ T (Φ); r ∈ R(Φ); ro a sequence
of read-only accesses; rw a sequence of read-write accesses;
and wo a sequence of write-only updates. The same entity
identifier may not occur twice within a single sequence of
entity references. Term p must be of the form f(p1, . . . , pn),
with f a computation constructor and p1, . . . , pn patterns,
following the value-added tyft format given in [8].

data Concl = Concl F [P] R T [AcRO] [AcRW] [UpWO]

The premise of an IML rule is a sextuple (t, r, p, ro, rw ,wo);
with t ∈ T (Φ); p ∈ P (Φ); r either or ∗ and ∈ R(Φ);
ro a sequence of read-only updates; rw a sequence of read-
write updates; and wo a sequence of write-only accesses.

The same entity identifier may not occur twice within a sin-
gle sequence of entity references.

data Prem = Prem T Rel P [UpRO] [UpRW] [AcWO]
data Rel = Rel R Rep
data Rep = NoRep | Rep -- either or ∗

Finally we define the IML Rule Format, using index sets
I and J with 0 6∈ I.

{(ti, i, pi, roi, rw i,woi) : i ∈ I} {ej B pj : j ∈ J}
(f(w1, . . . , wn), 0, t, ro0, rw0,wo0)

(40)
The tuple below the horizontal bar is a conclusion, and the
|I| tuples above the bar premises. Whenever an entity is
referenced in a conclusion or premise, it must be referenced
in the conclusion and all premises.

data Rule = Rule Concl [Either Prem SideCon]
type Spec = [Either Decl Rule]

Consider again the IML specification for While. We adopt
the same syntactic style as SOS and I-MSOS when display-
ing IML rules: we write read-only entity references before
the turnstile symbol, write-only references above the arrow,
and read-write references paired with program terms using
angle brackets.

The following section shows an IML specification is exe-
cutable via a translation into the lower level IML language.

4. INTERMEDIATE LANGUAGE
The previous section defines IML specifications based on

inference rules, giving both Haskell and mathematical def-
initions. In this section we define transaction-based IML
specifications (transaction are discussed later), mostly us-
ing Haskell. The goal is to present the IML language and
develop an operational semantics by means of a reference
interpreter. Section 4.2 shows how to generate transactions
from IML rules and thus how rule-based IML specifications
are translated into transaction-based IML specifications.

A transaction-based IML specification (simply specifica-
tion henceforth) is not executable in itself—it does not spec-
ify where input comes from nor what to do with input.
We assume an execution environment intends to send one
or more interpretation requests to an interpreter generated
from a specification. For this purpose we define queries. A
query is a pair (r, t), with t a closed term, r either or ∗,
and a relation symbol. An IML program is defined as an
IML specification with a number of queries.

type Speclo = [Either Decl TransDecl]
data Program = Program Speclo Queries
type Queries = [Query]
data Query = Query R T Rep

The abstract syntax of transactions is given by the Haskell
types in Figure 11. We use IML (short for I-MSOS inter-
mediate language), or the IML language, to refer to the set
of valid IML programs. Not all constraints on valid IML
programs are captured by the Haskell types. The missing
constraints are discussed throughout this section.

The types X , F , T , P , Expr , R, and Rep are defined in
Section 3. To explain IML transactions, we (loosely) bor-
row terminology related to database transactions. We say
a transaction is a procedure that reads from, and writes to,
some external state, by performing a series of statements.

data TransDecl = Trans R F [Stmts]
type Label = Int
type Stmts = [Stmt]
data Stmt

= PMArgs [P] -- match input arguments
| PM Expr P -- match given expression
| Single R T X Label -- T X transition
| Many R T X Label -- T ∗ X transition
| ROGet E X -- read-only access
| ROSet E Expr Label -- read-only update
| RWGet E X Label -- read-write access
| RWSet E Expr Label -- read-write update
| WOGet E X Label -- write-only acces
| WOSet E Expr -- write-only update
| Branches [Stmts] -- internal branching
| Commit T -- finalise transition to T

Figure 11: IML abstract syntax.

Each statement may fail, causing the transaction to abort
and any changes made to the external state are undone.
When all statements of a transaction have been successfully
executed, the changes to the external state are committed.
IML rules are implemented by transactions if we consider
a meta-environment (binding meta-variables to terms) and
the values of semantic entities as the external state. The dif-
ferent components of a rule—conclusion, premises and side-
conditions—correspond to one or more statements of the
transaction. Abortion of a transaction indicates that the
rule is not applicable. A commit delivers both a term and
any modifications made to semantic entities to the context
in which the transaction was applied.

An IML transaction is defined for a relation symbol and
a (computation) constructor f . The transaction’s body is an
arbitrary number of branches, each a sequence of statements
with a commit or branching statement at the very end (and
not earlier). Figure 12 shows a transaction generated for
IML rules (31) and (32). The statements of transactions are
shown with lower-case hyphenated constructor names. Some
constructors are left implicit, e.g. a meta-variable may be
both a term, a value, a pattern, and an expression, depend-
ing on where it occurs.

4.1 IML Semantics
We define the semantics of IML programs as a set of se-

mantic functions forming a reference interpreter. The focus
is on presentational clarity and not efficient execution. We
emphasise the operational semantics so that we can give a
detailed explanation of the propagation of semantic entities.
The presentation of the interpreter in this paper covers the
main aspects of IML, but is not exhaustive. The complete
interpreter is available online [1].

4.1.1 Declarations and transactions
Declarations for read-only and read-write entities deter-

mine their default values. Entity declarations evaluate to a
Ents, mapping entity identifiers to values and directions.

type Ents = Map E (V ,Dir)
data Dir = RO | RW |WO

The value of a write-only entity is a list of values and the
empty list by default. Relation declarations evaluate to a
mapping between relation symbols and predicates.

type RelPreds = RSymb → Predicate

→ TRANSACTION FOR: while

pm-args(E,C);
rw-get(store, σ, 0);
ro-set(env, σ, 1);
single(“⇓”, E,X0, 1);
pm(X0, false);
rw-set(store, σ, 0);

COMMIT: done

pm-args(E,C);
rw-get(store, σ, 0);
ro-set(env, σ, 1);
single(“⇓”, E,X0, 1);
pm(X0, true);
rw-set(store, σ, 0);

COMMIT: seq(C,while(E,C))

Figure 12: An IML transaction for Rules 31 and 32.

Transaction declarations evaluate to a TransMap, mapping
relation symbols and constructor pairs to the list of branches
mentioned in the declaration. An IML program contains at
most one declaration for each possible pair. The empty list
is returned if there is no declaration for a certain pair.

type TransMap = (R, F)→ [Stmts]

4.1.2 Executing transactions by backtracking
The purpose of a transaction is to perform a (single) tran-

sition t→ t′, where we refer to t and t′ as the (closed) input
term and output term respectively. Term t must be of the
form f(t1, . . . , tn), where f is the computation constructor
for which the transaction is defined. We refer to t1, . . . , tn
as the input arguments. A PMArgs statements attempts to
match the input arguments to a given list of patterns.

To determine whether a transition is possible, a transac-
tion executes statements, with one of three outcomes 1:

data Resstmt = Done | ⊥ | Commit (T,Ents)

Done indicates the successful execution of a statement. Out-
come Commit indicates the transaction has been success-
fully completed and provides the output term of the exe-
cuted transition. Component Ents provides values for some
read-write and write-only entities: referred to as the addi-
tional output of the transition. Outcome ⊥ indicates the
transaction has been aborted.

The context of transaction is formed by a TransMap, some
additional input in the form of entity values, the mapping
between relation and predicates computed from relation dec-
larations, and input arguments.

type CtxtT = (TransMap, Ents,RelPreds, [T])

Single and Many statements execute the premises of an IML
rule: Single performs a transition and Many a ∗ transi-
tion, for a given relation symbol , on the given input term.
The given meta-variable is bound to the output term. Their
respective semantics is described in detail in Section 4.1.3.
The unique label associated with a premise is used by get-
ter and setter statements to access (or update) entity values
specific to a premise 2. A ∆ contains entity values specific
to a certain label.

type ∆ = Map Label Ents
lookup∆ :: (E ,Label)→ ∆ → Maybe V
delete∆ :: (E ,Label)→ ∆ → ∆
project∆ :: Label → ∆ → Ents
override∆ :: Label → Ents → ∆→ ∆

1⊥ is not Haskell’s undefined, sometimes also typeset as ⊥
2IML transactions have simple control flow because of labels,
but more complicated semantics. Code-blocks could have
been used as an alternative.

Support function lookup∆ finds the value optionally stored
for a given entity under the given label. Functions delete∆

deletes the value of a given entity under the given label. The
Ents storing all entities for a certain label is obtained by
calling project∆, while override∆ replaces the Ents stored
for the given label.

The state of a transaction consists of a meta-environment,
binding meta-variables to (closed) terms, a ∆, and a list of
labels containing the labels of the executed premises.

type StateT = (MetaEnv ,∆, [Label])
init st = ({ }, { }, []) -- default/empty state

The list of labels is for remembering the order in which
premises have been executed, required for implicit entity
propagation (also discussed in Section 4.1.3). The initial
state init st consists of an empty meta-environment, an
empty map of type ∆, and an empty list of labels.

The semantics of statements is captured by the type 3:

type Semstmt = CtxtT → StateT → (Resstmt, StateT)

The semantics of abortion is defined as follows:

sem abort :: Semstmt

sem abort ctx st = (⊥, st)

The semantics of a sequence of statements is to execute the
sequence in order, until a statement commits or aborts.

sem stmts :: [Semstmt]→ Semstmt

sem stmts [] = error "branch w/o commit"
sem stmts (s : ss) ctx st = case s ctx st of

(Done, st ′)→ sem stmts ss ctx st ′

r → r

When a rule is not applicable to an input term t, another rule
may still be applicable. Rules are selected by backtracking
between branches. The flow of control is to jump back to
the last branching location, executing another branch with
the same state as the failing branch.

sem branches :: [[Semstmt]]→ Semstmt

sem branches [] = sem abort
sem branches (b : bs) = sem branch

where sem branch ctx st = case sem stmts b ctx st of
(Done,)→ error "branch without commit"
(⊥,) → sem branches bs ctx st
r → r

The result of the first successfully executed branch is the
overall result. Interpreters generated from IML specifica-
tions are not complete in the sense that not every possible
transition is actually performed. We assume that specifica-
tions are deterministic, i.e. in any context there is at most
one rule applicable. Interpreters may be generalised how-
ever, for example using a list of successes [33].

4.1.3 Implicit entity propagation
Mosses and New suggest multiple ways of interpreting I-

MSOS rules with two or more premises [18]. We determine
that premises can be executed in the order they appear in
the rule, or in any order that satisfies their dependencies.
Having chosen an order, unmentioned entities can be prop-
agated. Alternatively, unobserved effects in the presence

3The type is in close correspondence with a combination
of a Reader and State monad. We have decided against
implicitly propagating context and state using a monad, for
reasons of clarity

of multiple premises can be considered illegal, i.e. a rule
omitting a read-write or write-only entity may not execute
a transition involving that entity.

For practical reasons we choose to consider the premises
in the order they appear. We discuss the propagation of
unmentioned entities, although the IML semantics are easily
extended to support the alternative.

The following inference rules show how values of unmen-
tioned read-only, read-write, and write-only entities are prop-
agated for rules with n > 0 premises. All ti are arbitrary
terms, pi patterns, and →i relation symbols (or their itera-
tive variation), with 0 6 i 6 n. The empty list is written on
the conclusion’s relation symbol, when n = 0 in Rule (43).

ro-ent(ρ) ` t1 →1 p1 . . . ro-ent(ρ) ` tn →n pn
ro-ent(ρ) ` t0 →0 p0

(41)

〈t1, rw-ent(σ0)〉 →1 〈p1, rw-ent(σ1)〉
. . .

〈tn, rw-ent(σn−1)〉 →n 〈pn, rw-ent(σn)〉
〈t0, rw-ent(σ0)〉 →0 〈p0, rw-ent(σn)〉 (42)

t1
wo-ent(α1)−−−−−−→1 p1 . . . tn

wo-ent(αn)−−−−−−→n pn

t0
wo-ent(α1++...++αn)−−−−−−−−−−−−→0 p0

(43)

Implicit entity propagation is considered part of the seman-
tics of IML transactions (we do not rely on a procedure
explicating entity references). As a result, IML transactions
are as modular as I-MSOS rules and have the same meaning
in isolation as in combination with other rules.

We establish invariants on values of type Ents and ∆,
helping to ensure entity values are propagated according to
the above rules:

• In the context of a transition, an Ents contains values
for all of the read-only and read-write entities

• When occurring in the result of a transition (commit),
an Ents contains only those values of read-write and
write-only entities that have been mentioned in the
transition

• Before a premise with label l has been executed, an
entry l 7→ es in a ∆ indicates that the entity values in
es form additional input to the premise with label l,
and contains only values of read-only and read-write
entities.

• After a premise with label l has been executed, an
entry l 7→ es indicates that es are the unobserved side-
effects of executing the premise with label l. A getter
with label l observes a side-effect, binding the entity
value and removing it from ∆. The values in es are
for read-write and write-only entities only.

As an example of ‘observing a side-effect’, we give the
semantics of wo-get.

sem woget :: E → X → Label → Semstmt

sem woget eid x l (γ, δ, σ) = case lookup∆ (eid , l) δ of
Nothing → (γ [x 7→ []], δ, σ) -- defaults to empty list
Just v → (γ [x 7→ v], delete∆ (eid , l) δ, σ)

We use the non-Haskell shorthand γ [x 7→ v] to extend
meta-environment γ with the new binding x 7→ v .

4.1.4 Executing transitions
We use a helper function prop in :: [Ents] → Ents for

computing the additional input to a transition. The func-
tion merges the elements of its first argument by applying a
binary map-union operator that is right-biased with respect
to both read-only and read-write entities. Similarly, helper
function prop out :: [Ents] → Ents merges the additional
output of one or more premises by applying a map-union op-
erator that is right-biased with respect to read-write entities
and concatenates any write-only entities using list-append
operator ++. Functions prop in and prop out unite Ents
such that additional input and output is computed in accor-
dance with Rules 41-43.

The semantics of performing a (possibly repeated) transi-
tion is implemented by functions outer and inner . Function
outer performs substitution (function subs :: MetaEnv →
T → T) on a term to create the input term ct of the tran-
sition, before calling inner to execute the transition. If the
result is an output term ct1 and an Ents es1 then the state
is updated as follows: extend the meta-environment with a
new binding x 7→ ct1, replace the additional input stored
under label l by the additional output (es1) , add label l to
the list of executed premises.

outer :: Rep → R→ T → X → Label → Semstmt

outer rp r t x l (tm, es, ,) (γ, δ, σ) =
case inner rp r ct (tm, es, []) of
Commit (ct1, es1)→

(Done, (γ [x 7→ ct1], override∆ l es1 δ, σ ++ [l]))
→ sem abort ctx (γ, δ, σ)

where
ct = subs γ t
es = prop in (es : map (flip project∆ δ) (σ ++ [l]))

A transition is executed by executing the branches found by
applying TransMap tm to relation symbol r and computa-
tion constructor f . Constructor f and input arguments args
are obtained by pattern-matching on input term t0.

inner :: Rep → R→ T → CtxtT → Resstmt
inner (TVar) = error "open term"
inner rp r t0@(TCons isVal f args) (tm, es0, rinfo,) =

case sem branches (tm (r , f)) (tm, es0, args) init st of
Commit (t1, es1)
→ case rp of

NoRep → Commit (t1, es1)
Rep → rec t1 es1

→ if isVal ∧ reflVal then Commit (t0, { })
else ⊥

where reflVal = case rp of
NoRep → ValReflexive ∈ rinfo r
Rep → True

rec t1 es1 = case inner rp r t1 (tm, es1, []) of
Commit (t2, es2)→ Commit (t2, es2)

→ Commit (t1, es1)
where es2 = prop out [es1, es2]

where es1 = prop in [es0, es1]

A branch committing (t1, es1) indicates a successful transi-
tion from t0 to t1, forming the overall result if rp ≡ NoRep.
If there is no such branch, we may apply Rule (39) if relation
r is declared as reflexive on values, and commit (t0, []). The
case of repeated transitions is covered by greedily applying
inference Rules (37) and (38). If there is no committing
branch, and t0 is a value, we apply Rule (37), and commit
(t0, { }). If a transition is possible, we apply Rule (38) and
make a recursive call to inner . The implicit propagation
of entities between premises and conclusion of Rule (38) is
handled by prop in and prop out .

Single and Many are then defined in terms of outer .

sem single, sem many ::R→ T → X → Label → Semstmt

sem single = outer NoRep
sem many = outer Rep

A commit action returns Commit (ct , es) (together with
unmodified state st), where ct is the closed term acquired
by performing substitution on the given term t with the
current meta-environment γ. Ents es contains the union of
all unobserved side-effects of any premises, together with the
additional output provided by write-only setters and read-
write setters with label 0.

sem commit :: T → Semstmt

sem commit t ctx st@(γ, δ, σ) = (Commit (ct , es), st)
where ct = subs γ t

es = prop out (map (flip project∆ δ) (σ ++ [0]))

4.1.5 Evaluating expressions
An expression is either a (possibly open) value or the ap-

plication of a value operation to expressions. In the former
case, substitution is applied to the given value. The result of
evaluating an (operator-)expression may be Just a value or
Nothing . Nothing is returned if, for example, a partial value
operation is applied to values outside its domain. A meta-
environment is required to perform substitution on values.

type Semexpr = MetaEnv → Maybe V
sem val :: T {-value -} → Semexpr

sem val t γ = subs γ t

IML requires the definitions of value operations to be avail-
able in some library accessible by implementations of IML.

sem op :: O → [Semexpr]→ Semexpr

sem op op es γ
| all isJust margs = opApp op (map fromJust margs)
| otherwise = Nothing
where margs = map (flip ($)) γ) es

opApp "is-leq" args = ...
opApp "plus" args = ...
...

4.1.6 Pattern matching
The semantics of PMArgs statements is to match the in-

put arguments against the given sequence of patterns. We
rely on an unspecified function matches :: [T] → [P] →
Maybe MetaEnv to perform pattern matching. We write
γ1 [γ2] to refer to the right-biased union of γ1 and γ2.

sem pm args :: [P]→ Semstmt

sem pm args pats ctx@(, , , args) st@(γ1, δ, σ) =
case matches args pats of

Nothing → sem abort ctx st
Just γ2 → (Done, (γ1 [γ2], δ, σ))

Side-conditions and premises require matching a specific term
to a pattern, which is executed by PM statements. The first
argument is an expression to be evaluated. The statement
aborts if evaluating the expression does not yield a value
matching the pattern. Any new bindings are added to the
current meta-environment in case of a match.

sem pm :: Semexpr → P → Semstmt

sem pm e p ctx st@(γ1, δ, σ) = case e γ1 of
Nothing → sem abort ctx st
Just v → case matches [v] [p] of

Nothing → sem abort ctx st
Just γ2 → (Done, (γ1 [γ2], δ, σ))

4.1.7 Executing queries
A query is executed by invoking sem single or sem many ,

and committing the resulting output term.

sem query ::R→ T → Rep → Semstmt

sem query r t rep =
sem stmts [sem prem r t "x0"

, sem commit (TVar "x0")]
where sem prem case rep of

NoRep → sem single
Rep → sem many

A query is to be executed with the initial state, and a con-
text resulting from evaluating the specification’s declara-
tions. The result of executing a query is reported back to
some execution environment, which decides how to present
this information to the user.

4.2 Translating Rules to IML
This section shows how IML rules generate IML transac-

tions. We introduce a state monad VarGen, propagating
seeds for producing fresh labels and meta-variables.

type Fresh a = State (Label , Int) a
fresh var :: Fresh X
fresh lab :: Fresh Label

The following infix operators, together with ++, concatenate
sequences of statements (possibly) generated by Fresh com-
putations.

infixr 5 〈++〉 , 〈++ , ++〉
〈++〉 :: Fresh Stmts → Fresh Stmts → Fresh Stmts
〈++ :: Fresh Stmts → Stmts → Fresh Stmts
++〉 :: Stmts → Fresh Stmts → Fresh Stmts

An IML rule generates an IML transaction declaration. The
translation of getters and setters are straightforward and are
omitted. Read-write references in the conclusion generate
getters and setters with label 0.

gBody :: Rule → Fresh TransDecl
gBody (Rule (Concl f ps r rhs ro rw wo) conds) =

TransDecl r f ◦ ([]) 〈$〉
[PM Args ps] -- match arguments

++〉 gROgets ro -- ro-get statements
++〉 gRWgets 0 rw -- rw-get statements
〈++ gConditions conds -- pm statements
++ gRWsets 0 rw -- rw-set statements
++ gWOsets wo -- wo-set statements
++ [Commit rhs] -- commit

The resulting TransDecl has just one branch. However, as
stated in Section 4.1.1, a transaction’s body must contain
the branches for all rules with the same relation symbol and
(computation) constructor. Transaction declarations with
the same relation symbol and constructor are simply fused
by concatenating their branches (function not given).

Above the bar of an IML rule we find conditions—premises
and side-conditions—translated by gPrem and gSideCon re-
spectively.

gConditions :: [Either Prem SideCon]→ Fresh Stmts
gConditions = (concat 〈$〉) ◦mapM gCondition

where gCondition (Right sc) = gSideCon sc
gCondition (Left pr) = gPrem pr

Side-conditions generate one or two PM statements depend-
ing on whether the side-condition’s pattern p is a meta-
variable. Separate statements are generated for evaluating

the side-condition’s expression and matching the outcome
to p.

gSideCon :: SideCoc → Fresh Stmts
gSideCon (SideOp e p) = case p of

PVar x → return [PM e (PVar x)]
→ do x ← fresh var

return [PM e (PVar x)
,PM (Val (TVar x)) p]

A premise requires a unique label l and a Single or Many
statement surrounded by getters and setters with label l.

gPrem :: Premise → Fresh Stmts
gPrem (Prem t rel p ro rw wo) = do

l ← fresh lab
gROsets l ro ++〉 -- ro-set statements

gRWsets l rw ++〉 -- rw-set statements
gTransition l t rel p 〈++〉 -- single/many
gRWgets l rw 〈++〉 -- rw-get statements
gWOgets l wo -- wo-get statements

The definition of gTransition is slightly clever as redundant
statements of the form pm(y, x), where y = x, are avoided.

gTransition :: Label → T → Rel → P → Fresh Stmts
gTransition l t (Rel r rep) p = case p of

PVar x → return [prem r t x l]
→ do x ← fresh var

return [prem r t x l
,PM (Val (TVar x)) p]

where prem = case rep of NoRep → Single
Rep → Many

5. PROGRAM TRANSFORMATIONS
Sections 3 and 4 describe two representations of I-MSOS

inference rules, the high-level IML rules and the low-level
IML transactions, and compilation from the former to the
latter. The motivation for compiling to IML transactions
is the application of program transformations that are not
natural at the inference rule level.

As a low-level language, IML makes evaluation order and
control flow explicit. The statements of IML transactions
have been chosen to separate the actions that need to be
performed. For example, a premise may require setting a
new environment, performing a transition, and matching the
result term to a pattern. Each of these actions is performed
by a separate statement in an IML transaction. On the other
hand, IML is sufficiently general and makes no assumptions
about the style in which I-MSOS rules are written (e.g. big-
step or small-step) and about back-ends implementing it.

Well-known optimisations are applicable to IML transac-
tions, such as common subexpression elimination [19], com-
mon prefix elimination (left-factoring), and reordering based
on commutativity. The primary optimisation we discuss is
left-factoring, which can reduce the amount of work undone
by backtracking. Left-factoring has been applied by other
authors to generate efficient code from inference-based lan-
guage specifications [21, 31, 22], as well as in other domains
such as syntax analysis [11, 2].

5.1 Left-factoring
Left-factoring is the merging of common prefixes between

branches of IML transactions. Thus pushing branching points
‘downstream’, making backtracking less destructive. For ex-
ample, the IML transaction of Figure 12 consists of two
branches beginning with four identical statements. Figure

→ TRANSACTION FOR: while

pm-args(E,C);
rw-get(store, σ, 0);
ro-set(env, σ, 1);
single(“⇓”, E,X0, 1);

pm(X0, false);
rw-set(store, σ, 0);

COMMIT: done

pm(X0, true);
rw-set(store, σ, 0);

COMMIT: seq(C,while(E,C))

Figure 13: Left-factored version of Figure 12.

13 shows the transaction after left-factoring has been ap-
plied. The statements generated for the patterns of Rules (31)
and (32) have merged. This simple improvement could have
been achieved by applying the pattern-matching specific op-
timisations discussed in [22]. However, the benefits of left-
factoring extend beyond pattern matching. The premises
of the original inference rules of our example have been par-
tially merged: environment σ is set and a transition on term
E is performed as part of the same branch. However, the
result of the transition is matched with true or false in sep-
arate branches. This is possible because in the IML transac-
tion the premise is represented by three separate statements.

Rules (31) and (32) are presented such that the same
meta-variables bind the arguments of while (E and C) and
the current store (σ), making the rules easier to compare
for the reader and compiler. Left-factoring can be extended
by incorporating unification, a technique applied for similar
purposes in the domains of polymorphic type inference [20].
Rather than relying on strict syntactic equality, we use a no-
tion of equality insensitive to the names of meta-variables in
binding positions. Two statements are considered unifiable
if their respective meta-variables in binding positions can be
renamed such that the resulting statements are syntactically
equal.

5.2 Statement reordering
IML transactions are intended as a sequential representa-

tion of I-MSOS rules. The statements are to be executed,
and the branches to be tried, in the order that they are given
(top to bottom and left to right respectively, for example in
Figures 12 and 13).

As discussed in Section 4.1.2, the outcome of a trans-
action is either failure (⊥) or a committed term (together
with changes to some entities). Reordering a transaction’s
statements does not change the outcome of the transac-
tion, owing to the statements’ declarative origin 4. The
order of a transaction’s statements may influence its exe-
cution time in a context in which it aborts—less work is
wasted if an aborting statement is executed sooner rather
than later. Prioritising statements that are more likely to
fail may thus prove beneficial. Reordering statements may
also increase the effectiveness of left-factoring. As an ex-
ample, consider again Figure 13. We can observe that the
statements rw-set(store, σ, 0) and pm(X0, true) of the right
branch may be swapped. Because the same is possible in the
left branch, rw-set(store, σ, 0) can be moved further upwards
into the common prefix.

The order in which branches are considered does not in-

4An order is valid if the dependencies between statements
are respected and if there is a commit or branching state-
ment (only) at the end of every branch

fluence the outcome of a transaction if the branches orig-
inates from a deterministic I-MSOS specification (see Sec-
tion 4.1.2). Under this assumption, branches can be re-
ordered to prioritise branches that are less likely to fail.

Experiments have shown that reordering branches and
statements can have a major effect.

6. RELATED WORK
The IML language is motivated and inspired by several

recent specification languages based on I-MSOS: CSF [9],
its successor CBS [30], and DynSem [31]. Where CBS and
DynSem utilise I-MSOS, the Ott meta-language [27] and the
K Framework [25] embody their own formalisms for describ-
ing semantics. These approaches vary in their intended us-
age and the facilities they provide. For example, DynSem is
designed primarily for expressing dynamic semantics in the
big-step style, whereas CSF/CBS are designed primarily for
the small-step style. The rewrite rules in a K specification
define a concurrent transition relation describing the evo-
lution of state configurations. CSF and CBS also provide
a fixed set of transition relations which the user extends
with new inference rules, whereas in DynSem and Ott users
introduces their own transition relations. IML supports cus-
tom relations defined by fully general I-MSOS rules, possibly
written in big-step style, small-step style, or combinations
of the two.

Higher Order Attribute Grammars (HOAGs) extend con-
text free grammars with attributes for providing context
information [32], forming a powerful method for describ-
ing language semantics and tree-based computations in gen-
eral. The UUAG formalism implements HOAGs [28], and
enables modular specification by implicitly propagating un-
mentioned attributes.

As a declarative programming language, Prolog is a nat-
ural choice for developing interpreters based on SOS or I-
MSOS specifications [6, 9]. In [6], the authors generate Pro-
log clauses from MSOS rules. The clauses are left-factored,
and refocusing is applied to enhance the efficiency of small-
step based interpreters (see below). Left-factoring was first
applied to semantic specifications based on inference rules
in [21] and is also applied to DynSem specifications [31].

Interpreters generated directly from small-step SOS spec-
ifications suffer from a linear overhead [10]. Refocusing is an
alternative evaluation strategy tackling this problem, appli-
cable to SOS and MSOS rules of a certain form [4, 6]. The
strategy is similar to executing a pretty-big-step specifica-
tion [7, 5]. IML may take advantage of refocusing by auto-
matically transforming small-step IML rules into pretty-big-
step IML rules. Adding a pretty-big-step transformation to
IML would be the first attempt to combine refocused small-
steps rules and big-step rules in executable specifications.

CSF/CBS, DynSem, Ott, and K rely on compilation to
obtain reference interpreters from a high-level specification.
Their respective formalisms require an understanding of log-
ical inference or forms of term rewriting. The alternative
is to write specifications as programs in a general-purpose
language. However, developing an embedded, modular and
type-safe specification in a principled fashion requires a sub-
stantial understanding of advanced programming techniques,
often based on categorical concepts. To summarise, modu-
lar syntax composition can be achieved by defining injec-
tions (projections) of syntactic categories into (out of) a
mutual coproduct [29]. Monads and monad transformers

enable modular composition of semantic functions by im-
plicitly propagating contextual information [14]. The effect
handler approach, based on the notion of a free monad [23],
is very promising. Fully modular composition of both syn-
tax and semantics has been demonstrated for a large set of
programming constructs [35].

7. FUTURE WORK
We have motivated and presented the IML language, de-

signed as a target for translating the I-MSOS components of
semantic specification languages. In future work we intend
to show how IML can be used in the implementation of such
specification languages.

The IML Rule Format forms a minimal meta-language
and executable formal semantics can thus be developed di-
rectly as IML specifications. Together with this paper we
release an IML compiler accompanied by a substantial set
of value operations on a closed universe of values. The com-
piler translates rule-based IML specifications to reference
interpreters and LATEXversions of the IML rules, typeset in
the style of this paper, giving language designers and seman-
ticists a lightweight tool for developing executable formal
specifications. A medium sized case-study should demon-
strate the practicality of developing specifications directly
in IML.

The reference interpreter for IML programs provided in
this paper forms a basis for developing IML back-ends, and
enables reasoning about the soundness of program transfor-
mations. The development of efficient IML back-ends, and
a full exploration of the possible program transformation
techniques improving the efficiency of IML programs, is the
topic of future work. In particular, we are interested in ex-
ploring both static and dynamic techniques for finding more
efficient orderings over IML statements and branches.

The PLanCompS project developed a component-based
approach to programming language semantics [9]. Funda-
mental language constructs, called Funcons, are specified by
I-MSOS small-step rules. We are interested in using IML
to generate faster interpreters from Funcon specifications.
A library of highly reusable Funcons is used in several case
studies and future case-studies would immediately benefit
from any efficiency improvements.

8. REFERENCES
[1] Online Resources for “An Intermediate Language for

Efficient Interpretation of Implicitly Modular
Structural Operational Semantics”.
www.plancomps.org/ifl2016, 2016.

[2] A. V. Aho and J. D. Ullman. The Theory of Parsing,
Translation, and Compiling. Prentice Hall, 1972.

[3] E. Astesiano. Inductive and operational semantics. In
Formal Description of Programming Concepts, IFIP
State-of-the-Art Reports, pages 51–136. Springer,
1991.

[4] C. Bach Poulsen. Extensible Transition System
Semantics. PhD thesis, Swansea University, 2016.

[5] C. Bach Poulsen and P. D. Mosses. Deriving
pretty-big-step semantics from small-step semantics.
In 23rd European Symposium on Programming,
volume 8410 of Lecture Notes in Computer Science,
pages 270–289. Springer, 2014.

[6] C. Bach Poulsen and P. D. Mosses. Generating
specialized interpreters for modular structural
operational semantics. In 23rd International
Symposium on Logic-Based Program Synthesis and
Transformation, pages 220–236. Springer, 2014.

[7] A. Charguéraud. Pretty-big-step semantics. In 22nd
European Symposium on Programming, volume 7792
of Lecture Notes in Computer Science, pages 41–60.
Springer, 2013.

[8] M. Churchill and P. D. Mosses. Modular bisimulation
theory for computations and values. In 16th
International Conference on Foundations of Software
Science and Computation Structures, volume 7794 of
Lecture Notes in Computer Science, pages 97–112.
Springer, 2013.

[9] M. Churchill, P. D. Mosses, N. Sculthorpe, and
P. Torrini. Reusable components of semantic
specifications. In Transactions on Aspect-Oriented
Software Development XII, volume 8989 of Lecture
Notes in Computer Science, pages 132–179. Springer,
2015.

[10] O. Danvy and L. R. Nielsen. Refocusing in reduction
semantics. BRICS Research Series RS-04-26,
Department of Computer Science, Aarhus University,
2004.

[11] D. Grune and C. J. H. Jacobs. Parsing Techniques: A
Practical Guide. Ellis Horwood, 1990.

[12] G. Kahn. Natural semantics. In Fourth Annual
Symposium on Theoretical Aspects of Computer
Science, volume 247 of Lecture Notes in Computer
Science, pages 22–39. Springer, 1987.

[13] L. C. L. Kats and E. Visser. The Spoofax language
workbench: Rules for declarative specification of
languages and IDEs. In International Conference on
Object Oriented Programming Systems Languages and
Applications, pages 444–463. ACM, 2010.

[14] S. Liang, P. Hudak, and M. Jones. Monad
transformers and modular interpreters. In 22nd
Symposium on Principles of Programming Languages,
pages 333–343. ACM, 1995.

[15] R. Milner, M. Tofte, and D. MacQueen. The
Definition of Standard ML. MIT Press, 1997.

[16] P. D. Mosses. Pragmatics of modular SOS. In
International Conference on Algebraic Methodology
and Software Technology, volume 2422 of Lecture
Notes in Computer Science, pages 21–40. Springer,
2002.

[17] P. D. Mosses. Modular structural operational
semantics. Journal of Logic and Algebraic
Programming, 60–61:195–228, 2004.

[18] P. D. Mosses and M. J. New. Implicit propagation in
structural operational semantics. In Fifth Workshop
on Structural Operational Semantics, volume 229(4) of
Electronic Notes in Theoretical Computer Science,
pages 49–66. Elsevier, 2009.

[19] S. S. Muchnick. Advanced Compiler Design
Implementation. Academic Press, 1997.

[20] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, 1999.

[21] M. Pettersson. Compiling Natural Semantics, volume
1549 of Lecture Notes in Computer Science. Springer,
1999.

[22] S. L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice Hall, 1987.

[23] G. Plotkin and M. Pretnar. Handlers of Algebraic
Effects, pages 80–94. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[24] G. D. Plotkin. A structural approach to operational
semantics. Journal of Logic and Algebraic
Programming, 60–61:17–139, 2004. Reprint of
Technical Report FN-19, DAIMI, Aarhus University,
1981.

[25] G. Roşu and T. F. Şerbănuţă. K overview and
SIMPLE case study. Electronic Notes in Theoretical
Computer Science, 304:3–56, 2014.

[26] N. Sculthorpe, P. Torrini, and P. D. Mosses. A
modular structural operational semantics for delimited
continuations. In 2015 Workshop on Continuations,
volume 212 of Electronic Proceedings in Theoretical
Computer Science, pages 63–80. Open Publishing
Association, 2016.

[27] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine,
T. Ridge, S. Sarkar, and R. Strnisa. Ott: Effective tool
support for the working semanticist. J. Funct.
Program., 20(1):71–122, 2010.

[28] S. D. Swierstra, P. R. A. Alcocer, and J. Saraiva.
Designing and implementing combinator languages. In
Advanced Functional Programming, pages 150–206.
Springer Berlin Heidelberg, 1999.

[29] W. Swierstra. Data types à la carte. J. Funct.
Program., 18(4):423–436, July 2008.

[30] L. T. van Binsbergen, N. Sculthorpe, and P. D.
Mosses. Tool support for component-based semantics.
In Companion Proceedings of the 15th International
Conference on Modularity, pages 8–11. ACM, 2016.

[31] V. Vergu, P. Neron, and E. Visser. DynSem: A DSL
for dynamic semantics specification. In 26th
International Conference on Rewriting Techniques and
Applications, volume 36 of Leibniz International
Proceedings in Informatics, pages 365–378. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

[32] H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher
order attribute grammars. In Proceedings of the ACM
SIGPLAN 1989 Conference on Programming
Language Design and Implementation, PLDI ’89,
pages 131–145, New York, NY, USA, 1989. ACM.

[33] P. Wadler. How to replace failure by a list of
successes. In Conference on Functional Programming
Languages and Computer Architecture, pages 113–128.
Springer, 1985.

[34] P. Wadler. The essence of functional programming. In
19th Symposium on Principles of Programming
Languages, pages 1–14. ACM, 1992.

[35] N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in
scope. In Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell, Haskell ’14, pages 1–12, New
York, NY, USA, 2014. ACM.

