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1964

The mechanical evaluation of expressions

By P. J. Landin

This paper is a contribution to the “‘theory’’ of the activity of using computers. It shows how
some forms of expression used in current programming languages can be modelled in Church’s
A-notation,. and then describes a way of ‘‘interpreting’’ such expressions. This suggests a
method, of analyzing the things computer users write, that applies to many different problem
orientations and to different phases of the activity of using a computer. Also a technique is
introduced by which the various composite information structures involved can be formally
characterized in their essentials, without commitment to specific written or other representations.

Introduction

The point of departure of this paper is the idea of a
machine for evaluating schoolroom sums, such as

1. B+495 +6)(7+8)
2. if 2'9 < 312 then 124/2 else 334/2

3 \/(17 cos w17 — /(1 — 17 sin =/[17)
’ 17 cos w17 + /(1 + 17 sin =/17)

Any experienced computer user knows that his
activity scarcely resembles giving a machine a numerical
expression and waiting for the answer. He is involved
with flow diagrams, with replacement and sequencing,
with programs, data and jobs, and with input and output.
There are good reasons why current information-
processing systems are ill-adapted to doing sums.
Nevertheless, the questions arise: Is there any way of
extending the notion of “sums” so as to serve some of
the needs of computer users without all the elaborations
of using computers? Are there features of “sums” that
correspond to such characteristically computerish con-
cepts as flow diagrams, jobs, output, etc.?

This paper is an introduction to a current attempt to
provide affirmative answers to these questions. It
leaves many gaps, gets rather cursory towards the end
and, even so, does not take the development very far.
It is hoped that further piecemeal reports, putting right
these defects, will appear elsewhere.

Expressions
Applicative structure

Many symbolic expressions can be characterized by
their “operator/operand” structure. For instance

al(2b + 3)

can be characterized as the expression whose operator
is °/” and whose two operands are respectively ‘a,’ and the
expression whose operator is ‘4’ and whose two
operands are respectively the expression whose operator
is ‘X’ and whose two operands are respectively ‘2’ and
‘b,” and ‘3. Operator/operand structure, or “applica-
tive” structure, as it will be called here, can be exhibited
more clearly by using a notation in which each operator

is written explicitly and prefixed to its operand(s), and
each operand (or operand-list) is enclosed in brackets,

e.g.
la, + (x (2, b), 3)).

This notation is a sort of standard notation in which
all the expressions in this paper could (with some loss
of legibility) be rendered.

The following remarks about applicative structure
will be illustrated by examples in ‘which an expression is
written in two ways: on the left in some notation whose
applicative structure is being discussed, and on the right
in a form that displays the applicative structure more
explicitly, e.g.

al(2b + 3) /(a, +(X(2, b), 3))
(a + 3)(b - 4) + +(X(+(aa 3)’ - (b’ 4))’
(¢ — 5(d — 6) X (+(c, 5), — (4, 6))).

In both these examples the right-hand version is in the
“standard” notation. In most of the illustrations that
follow, the right-hand version will not adhere rigorously
to the standard notation. The particular point illus-
trated by each example will be more clearly emphasized
if irrelevant features of the left-hand version are carried
over in non-standard form. Thus the applicative
structure of subscripts is illustrated by

abji a(j)b(j, k)-

Some familiar expressions have features that offer
several alternative applicative structures, with no
obvious criterion by which to choose between them.
For example

+(+(+@3,4), 5),6)

+@3, +(4, +(5,6))
2(3,4,5,6)

where X’ is taken to be a function that operates on a
list of numbers and produces their sum. Again

{T(a, 2)

square (a)

3444546

a?

where 1 is taken to be exponentiation.
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» applicative expressions (AEs)
- A-abstraction, application

» structure definitions
- algebraic data types

» an abstract machine

- stack (S), environment (E), control (C), dump (D)



Applicative expressions (AEs)

i An AE is either :
. an identifier, |

| or a A-expression (Aexp) and has a bound variable (by) |
| which is an identifier or |
identifier-list,
and a A-body (body)
which 1s an AE,

{ or a combination and has an operator (rator)

which is an AE,

and an operand (rand)
which is an AE. i



Applicative expressions (AEs)

» AEs (X) generally have values (in environments E)

- independently of any machine

recurswe ValEX— zdemzﬁerX > EX |
AexpX — f :
where fx=val(derive(assoc(bvX x))E)]

(bodyX) ?

else > {valE(ratorX)}[valE(randX)]. |



Syntactic sugar for AEs

p Lists
X, y,z=x:(,2)=x:(y unitlistz) = x : (y : (z : ())). |

» Conditional expressions

» Recursive definitions, “paradoxical” fixed-point operator (Y)

,' o (a L (b c)) - I —

f(n)—lfn=0then 1 f=YM.A.ifn=0thenl |
| _esenf(n—1) “else nf(n — 1).]
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A Co:rrespondence Between
ALGOL 60 and Church’s Lambda-
Notation: Part I*

By P.J. Laxpint

This paper describes how some of the semantics of ALGOL
60 can be formalized by establishing a correspondence
between expressions of ALGOL 60 and expressions in a
modified form of Church’s \-notation, First a model for com-
puter languages and computer behavior is described, based on
the notions of functional application and functional abstraction,
but also having analogues for imperative language features.
Then this model is used as an “abstract object language' into
which ALGOL 60 is mapped. Many of ALGOL 60's features
emerge as particular arrangements of a small number of struc-
tural rules, suggesting new classifications and generalizations.

The correspondence is first described informally, mainly by
illustrations. The second part of the paper gives a formal
description, i.e. an “abstract compiler” info the “abstract object
language.” This is itself presented in a “purely functional”
notation, that is one using only application and abstraction,
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Introduction

Anyone familiar with both Churel’s M-caleuli (see c.g-
[7]) and Avncou 60 (6] will have noticed a superficial ve-
semblance between the way variables tic up with the N's
in a nest of h-expressions, and the way identifiers tie up
with the headings in a nest of procedures and blocks. Some
may also have observed that in, say

INF(a) + F(0)} ea® + pe + q)

the two A-expressions, Le. the operator and the operand,
play roughly the roles of block-body and procedure-
declaration, respectively. The present paper explores this
rescimblavce in some detail.

The presentation falls into four seetions. The first see-
tion, following this introduction, gives some motivation
for examining the correspondence. The second section de-
seribes an abstraet language based on Church’s A-caleuli.
This abstract language is a development of the AE/SECD
system presented in 3] and some aequaintance with that
paper (hereinatter referred to as [MEL]) is assumed here.
The third seetion describes informally, mainly by illus-
trations, a correspondence between expressions of Arcown
60 and expressions of the abstract language. The last
section formalizes this correspondence; it first deseribes
a sort of “abstract Ancor 60”7 and then presents two fune-
tions that map expressions of abstract Avcon 60 into, on
the one hand, Ancorn 60 texts, and on the other hand
expressions of the abstract language.

Motivation

It seems possible that the correspondence might form
the basis of a formal deseription of the semantics of Arncor
60. As presented here it reduces the problem of specifying
AvrcoL 60 semantics to that of specifying the semantics of
a structurally simpler language. The formal treatment of
the latter problem is beyond the scope of this paper, and
hence likewise a formal proof that the correspondence de-
scribed here is correct. It is hoped that the informal ac-
count of the semantics of the abstract “object language”

*Part II of this paper, which gives the Formal Presenta-
tion of the Correspondence, will appear in the March, 1965 issue
of the Communications of the ACM.

T Present address: Univac Division of Sperry Rand Corpora-
tion, Systems Programming Research, New York, New York.

!This view is expanded in [10].
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A Correspondence Between
ALGOL 60 and Church’s Lambda-
Notation: Part II*

By P. J. Laxoivt

Introduction

The first part of this paper described an abstract lan-
guage based on Church’s A-caleuli, and comprising ex-
pressions called “imperative applicative expressions”
(IAEs). An informal account was given of the way IAEs
can be considered as a generalization and structural
simplification of Arcor 60. The present part presents a
formal mapping of Arcor 60 into TAEs.

Formal Presentation of the Correspondence

The correspondence between Arncon 60 and IAFs is
presented here largely in terms of AEs, or more precisely,
in AEs written with an informal syntax that was mostly
described in [MEL]. So TAEs figure firstly as analyses of
expressions of ArLcor 60 and secondly as description of the
analytical process itself. This dual role of IAEs is in a sense
fortuitous. However, it has incidental advantages. It pro-
vides an example of the use of AEs as a descriptive tool.
It also saves us the burden of introducing yet another
language in our attempt at language explication.

The presentation that follows somewhat resembles a
syntax-oriented compiler in that it is composed of two
expressions, namely: first, a syntactic expression that de-
termines a parenthesization of each well-formed Arcor 60
text and a classification of the parenthesized segments;
and, second, a “semantic function” that associates an TARE
with each parenthesized text, and hence (on the assump-
tion of unique parenthesization) with each text.

We claborate the notion of a parenthesized text as fol-
lows. We characterize a certain class of constructed ob-
jects (COs), called ALGOL 60 COs (ACOs), which can be
considered as abstract Avcon 60 programs and parts of
programs. Each ACO corresponds to an Arcon 60 text

* Received April, 1964; revised November, 1964. Part I of this
paper appeared in the Communications of the ACM 8, 2 (1965),
89-101. The complete list of References appears with Part I,

t Present address: Univac Division of Sperry Rand Corpora-
tion, Systems Programming Research, New York, New York.
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(or more accurately, to a class of texts that ave, in g fairly
trivial sense, “mutually interchangeable”) that can be o
sidered as the written representation of the abstract ACQ,
Our syntactic expression is an expression denoting a fun.
tion sprogram that passes from an ACO to the class of
texts representing it. Our semantic function, nprogrm,
passes from an ACO to an TAE that models it. In choosing
an IAE that models a particular Arcon 60 program thee
are many decisions to be made, some trivial and some more
interesting in that they are analogous to important de-
cisions made when implementing Avcor 60. However, for
our present purposc the main virtues are conciseness and
transparency of the semantic function, cven at the cost of
these qualities in the resulting TAEs.

ABSTRACT ALGOL

The structurc definition that follows characterizes a
class of constructed objects, called ALGOL 60 COs (ACOs),
that mirror Arncor 60 programs. The relation between
Arcown 60 texts and ACOs is many-one; it would' be one-
one but for spaces, comments, parameter delimiters and
the optional omission in Ancor 60 of ‘real’ in certain oc-
currences of ‘real array’. (It is likely that some other
languages make more use of such trivial equivalences) In
framing the definition of ACOs, there is no attempt o
filter out just nonscnse as

if a+b then ...
or
real r; if ¢ then ..,

whereas the syntactic expressions of the ALcown 60 do -
clude the first, if not the second. (I'our equivalent identi-
fiers, ‘arithexp’, ‘Boolexp’, ‘designexp’ and ‘cxp’, are used
below solely for improved readability. Their merit depends
on our undertaking not to interchange them misleadingly)
In general, ACOs arc more tolerant than Arcot &
syntax. In some cases, such as the ones given above, the
license is short-lived because it leads to undefined reSlllt?":
but others will actually be given a meaning by our semante
function, e.g.
... real procedurca; a = b+t
procedure f; value g;...

and
.o Lrif p thens;, L.

The structure definition of ACOs uses certain quxiliary

Volume § / Number 3 / March, 1963
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A correspondence between ALGOL 60 and Church’s
lambda-notation. Comm. ACM (1965) 8:89—101, 158—165.

» imperative applicative expressions (IAEs)

- AEs + program-points (J), assigners (lhs < rhs)

» correspondence

- ALGOL 60 abstract syntax (ACOs)
- synthetic syntax functions : ACOs — Sets(Texts)

- semantic functions : ACOs — |AEs



ALGOL 60

Landin was an adviser on the official language definition

Revised report on the algorithmic language ALGOL 60
Dedicated to the memory of William Turanski

by
J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy,
P. Naur, A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois,
J. H. Wegstein, A. van Wijngaarden, M. Woodger

Edited by
Peter Naur

The report gives a complete defining description of the international algorithmic language
ALGOL 60. This is a language suitable for expressing a large class of numerical processes in
a form sufficiently concise for direct automatic translation into the language of programmed
automatic computers.

The introduction contains an account of the preparatory work leading up to the final conference,
where the language was defined. In addition the notions reference language, publication language,
and hardware representations are explained.

In the first chapter a survey of the basic constituents and features of the language is given, and
the formal notation, by which the syntactic structure is defined, is explained.

The second chapter lists all the basic symbols, and the syntactic units known as identifiers,
numbers, and strings are defined. Further, some important notions such as quantity and value
are defined.

The third chapter explains the rules for forming expressi and the ing of these expressions.
Three different types of expressions exist: arithmetic, Boolean (logical), and designational.

The fourth chapter describes the operational units of the language, known as starements. The
basic stat ts are: assi ts (evaluation of a formula), go ro statements (explicit
break of the sequence of execution of sta ts), dummy st and procedure statements
(call for execution of a closed process, defined by a procedure declaration). The formation of
more complex structures, having statement character, is explained. These include: conditional
statements, for sta t 7 { sta ts, and blocks.

In the fifth chapter the units known as declarations, serving for defining permanent properties
of the units entering into a process described in the language, are defined.

The report ends with two detailed examples of the use of the | and an alphabetic index
of definitions.
Contents
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ALGOL 60

Expressions

» arithmetic, relational, logical, conditional

» function application, array and switch components
Statements

» assignment, conditional, for-loop, compound

» procedure call, jump

Declarations

» variable, function, procedure, array, switch

» block, recursion, name and value parameters

11
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P.J. Landin: A formal description of ALGOL 60.

» an introduction to the full description
» illustration of the correspondence

» discussion of foundations

Formal
Language
Description
Languages

| Computer -
' Programming

12



1965

P.J. Landin: A generalization of jumps and labels.

» program-closures, J
- syntactic sugar for program-points

» an extended SECD-machine

13
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P.J. Landin: The next 700 programming languages.

» ISWIM (If you See What | Mean)
- family of unimplemented(?) languages

- extends IAEs with (let, where, rec, pp) definitions

14



Landin’s description of ALGoL 60

sprogran/

concrete 1AEsS
syntax

abstract

syntax

\program

Iambda-

notatlon

Sets of
texts

15



€€

A program is a labeled closedprogram,
where rec
a closedprogram is
either a block and has
a head which is a nonnull decl-list,
and a body which is an openprogram,
or else is an openprogram,

where an openprogram is a nonnull labeled (statement)-list,

and a statement is
either cond and is
either 2armed and has
a condition which is a Boolexp,
and a lstarm which is a labeled uncondstatement,
and a 2ndarm which is a labeled statement,
or larmed and has
a condition which is a Boolexp,
and an arm which is
either looping and is a labeled forstatement,
or else is a labeled uncondstatement,
or looping and is a forstatement,
or else is an uncondstatement,
and a forstatement has
a control which is a variable,
and a forlist which is a nonnull forlistelement-list,
and a body which is a labeled statement,
where a forlistelement is
cither a progression and has
an initigl which is an arithexp,

Volume 8 / Number 3 / March, 1965

and an dner which is an arithexp,
and a terminal which is an arithexp,
or an tleration and has
a rhs which is an arithexp,
and a condition which is a Boolexp,
or else is an arithexp,
and an uncondstatement is
either composite and is a elosedprogram,
or jumping and has a body which is a designexp,
or a dummy,
or assigning and is an assignexp,
where rec an assignexp has
a lhs which is a variable,
and a rhs which is
either sémple and is an exp,
or else is an assignexp,
or else is a functiondesig,
and a labeled (S) is
either tagged and has
a label which is an identifier,
and a body which is a labeled(S),
or else is an S,
and a decl is either nonrec and is a nonrecdecl,
or rec and is a recdecl,
where a nonrecdecl has
an ownness which is a truth-value,
and a body which is
either a typedecl and has
a type which is a classexp,
and a mee which is a nonnull identifier-list,
or an arraydecl and has
a type which is a classexp,
and a body which is a nonnull arraysegment-list,
where an arraysegment has
a nee which is a nonnull identifier-list,
and a size which is a (2-arithexp-list)-list,
and a recdecl is
either a switchdecl and has
a nee which is an identifier,
and a niens which is a nonnull designexp-list,
or a procdecl and has
a fype which is a classexp,
and a nee which is an identifier,
and formals which are a (possibly null) identifier-list,
and a zalpart which is a (possibly null) identifier-list,
and a specpart which is & (possibly null) spec-list,
where a spec has
a specifier which is a classexp,
and a body which is a nonnull identifier-list,
and a body which is either code,
or else is a labeled statement,
where rec
an exp is either cond and has
a condition which is a Boolexp,
and a lstarm which is a simpexp,
and a 2ndarm which is an exp,
where a simpexp is a

2op(‘=’,
20p (D7,
20p(V?,
20p(‘/\’,
lop(‘-7,
D0p(t< S| = ez | >0 ]
20p (7] -7,
lop(4+ | =

20p(X7 | ]+,
20p(*1 ", typeprimary))))))))))
where a lop(o,S) is
either lcompound and has

Communications of the ACM 159

Abstract syntax (ACOs)

resented informally as a rather long English sentence...

a rator which is an o,
and a rand which is an S,
or else is an S,
and a 20p(0,S) is
either 2compound and has
8 ralor which is an o,
and a Istrand which is a 20p(0,8)
and a 2ndrand which is an S,
or else is an S,
and a typeprimary is
either a const which is
either arithmetical,
or Boolean,
or string,
or simple and is a variable,
or else is an exp,
and an arithexp is an exp,
and a Boolexp is an exp,
and a designexp is an exp,
and a classexp is

either simple and is ‘real’ | ‘integer’ | ‘Boolean’ | ‘string’ |

‘label’ | ‘command’,
or else has a rator which is ‘array’ | ‘procedure’,
and a rand which is a classexp,
and a variable is
either simple and is an identifier,
or an element and has
a ralor which is an identifier,
and a rand which is a nonnull arithexp-list,
or else is a functiondesig,
and a functiondesig has
a rator which is an identifier,
and a rand which is a nonnull exp-list.

1{¢

)



Abstract syntax (ACOs)

“presented informally as a rather long English sentence...”

where ree an assignexp has
a ths which is a variable,
and a rhs which is
either semple and is an exp,
or else 1s an assignexp,

16
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nprogram : ACOs - |AEs

is merely an abbreviation for
combine (f7, conslisting (combine('g’, @’), ‘¥’))
We start with two list-processing functions, that are
needed later:
ree map f L = null I — ()

else - f(hLY: mapf(LL)
e.g. map square (1,3,7,2,3) = (1,9,49,4,9)
unzip L = (map st L, map 2nd L)
eg. unzip ((1,2), 3,4), 5,6), (7,8)) = ((1,3,5,7), (2,4,6,8))

ree select(p) (LY = null L — ()
p(hls) — hlselect(p) (tL)
else — select(p) (IL)

Next come functions for processing IAEs and defini-
tions. These are built up from the constructors for TALs,
namely conskexp, conspp, consassigner and combine. They
also use the selectors and constructor for definitions,
naely nee, niens and consdef.

* combines(F,X,¥) = combine(combine(F,X),Y)
e.g. combines(“D “sin’ “kn/27) = *{Dsin}{kn/2]”
! combine; (F,X,Y,Z) = combine(combines(F,X,Y),Z)
binelist(F,X) = bine (F conslisting(X))
e.g. combinelist(“”,(“at+b",“c+d"")) = “fla-tb,etd)”
consredex(J,X,Z) = combine(conshexp(J,X},Z)
e.z. conspredex(“w’,“ula-tu)’,b+c?) = “Duaulatu)ibtel”

Le. “u(a-tu) where u = b+c”
cons Yredex(J,X) = combine(‘Y’, conshexp(J,X))

e.z. consYredex (L, a:(b:L)") = “¥YAL.a:(b:L)"?

i.e. (roughly) “L where rec L = a:(b:L)”

delay(X) = conshexp(conslisting( },X)
e.g. delay(““f(@) + )7 = *N)Sl@) + fB)”
do(X) = combinelist(X,())
eg. do(te”) = “a()”
conscondexp (P,X) = do(combinelist(combine(‘if’,P), map delay X))
e.g. conscondexp(“a=07,“",“1/a’") =
“if @=0)(\().a, AN ). /a)()”
delayed(F) = combine(‘B’, F)
e.g. delayed(“float”) = *Bfloat”
ie. (roughly) f where f(z) = float-z”
serial(X) = delay (serial ' (X ,conslisting( )))
where serial’ (X,Z) = nullX — Z
else — serial’ (1X ,combine(hX,Z))
e.g. serial(“R7, “§”, “T7) = “‘NO)LTESERON”
ie. “T-S.R”

parallel(D) = let J = map nee D
and Z = map niens D
consdef(conslistingJ , conslistingZ)
e.g. parallel (“let u = a-+b”,
“Jet v = c+d’,
“let w = e+f") =
“let (u, v, w) = (a+b, c+d, e+f)”
lexp’ (P, F) = Newp (0, con dexp(do P, map do F))
where do(f) = combine(f, ‘z’)
5. conscondesp’ (“P U g7, “f”, “g-h”) =
‘A (PUg) @) - f@)
else — (g-h) ()”

Jump (X) = combine (J?, X)
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consletexp(D, X) = consBredex(nee D, X, niens D)
e.g. consletezp (“letx = 2p — ¢, “z(x + 1)) =
“let z = 2p — ¢
(@ + )7
consrecexp(D,X) = conspredex(nee D, X, consYredex
(nee D, niens D))
e.g. consrecezp (‘“let z = 22417, “a(z+4+1)")=
“Jet rec z = x*+%
a(x41)”
labels (N, X) = conspredex(N, X, map jump N)
e.g. labels (“L, M, “¢") =
‘et L = JL
and M = JM
o

arrangeaspseudoblock (D, X) = convecexp(D, labels(nee D, X))
arrangeasblock(D, D', D", X) =

consletexp (D, consrecexp (parallel(D',D"), labels(nee D", X)))
e.g. (roughly)
arrangeasblock(‘let a = ¢1”, “letp () =¢2",

“letL=¢, and M=g¢5", “ds”")=
“let @ = ¢y
let rec p(z) = ¢2
and L = ¢,
and M = ¢s5

let L = JL

and M = JM

¢s”
arrangeasblock’ (D, D", X) = arrangeasblock(D, parallel(), D", X)

There now follows the definition of the semantic function
nprogram, with its auxiliaries nforlistelement, nexp, ete.

ool beled.

nprogramS = arrang ogramN.‘I")8)
where rec
nelosedprogramNLS =
blockS — let Do, D, D', Xo =
nhead(N, derive(classifiedvariablesS)N) (headS)

let Dy, D", X" = nopenprogram(pnovN)L (bodyS)
(parallel(Do, Do"),
parallel( ),
arrangeasblock(D,D’, D”, serial(Xo,X")}}
else — nopenprogramNLS
where nopenprogramNLS =
aull (1S) — nlabeled (nstatement NL) (hS)
else — let j, N', N” = takenewlabelN
let Dy, D, X = nlabeled(nstatementN'j) (hS)
let Dy, D', X’ = nopenprogram(pnooN")L(S)
.. (arallel(Do, D),
parallel(D, consdef(j, delayX'), D'),
X)
and nstatementNLS =
condS —
let Dy, D, X =
2armedS ~ nlabeled (nuncondstatementNL) (LstarmsS)
larmedS — nlabeled (looping (arm8) ~ nforstatementN
else — nuncondstatementNL)
(armS)
let Dy, D/, X' =
armed — nlabeled(nstatement N L) (2ndarmS)
larmed - parallel( ), parallel (), ‘I’
(parallel(Dy, Dy');
parallel(D, D),
lexp (nBoolexp ditionS), (X, X")))
loopingS — serial (nfor tNS, L)

else — nuncondstatementNLS

Communications of the ACM 163

and nforstatementNS =
let Dy, D, X = nlabeled (nstaiementN I’} (bodyS)
(Do,
parellel( ),
combinelist(‘for’,
(nlhsN (controlS),
combinelist(‘concatenate®’,
map (nforlistelementN) (forlisiS)),
arrangeaspseudoblock(D, X)))
where nforlistelementNS =
progressionsS —
combinelist(‘step™,
map (naritherpN)
(initialS, incrS, terminalS))
dlerationS —
combinelisi(‘while*’,
(narithexpN (vhsS),
nBoolexpN (conditionS)))
else — combine (“unitlist™ | narithespNS)
and nuncondstatementNLS =
compositeS — nclosedprogramNLS
else — (parallel( ),
parallel( ),
(FumpingS — ndesignexpN (bodyS)
else -
serial ((dummyS — I’
assigningS — combines(‘K°, conslisting( ),
nassignexpNS)
clse — nfunctiondesigNS),
[)]
where rec nassignexpNS =
combines(‘assignandhold’,
(stmpleS — nexpNS
else —» nassignexpN (rhsS)),
nlhsN (lhsS))
and nlabeled (neategory) (S) =
taggedS — let Do, D, X = nlabeled(ncategory) (bodyS)
Dy, parallel (consdef (labelS, delayX), D), labelS
else — ncategoryS
and nhead(N, N')(S) =
let Dy', D’ = map parallel
(unzip (map nrecdeclN’ (select rec 8)))
(parallel (Dy': map nnonrecdectN (select ownness S,
parallel (map nnonrecdectN (select(— -ownness) 8)),
D,
sertal (map nownarraydeclresetN (select(arraydecluownness) S)))
where nnonrecdecINS = typedeclS — ntypedecINS
arraydecl S — narraydecNS
and nrecdecINS = switchdect S — nswitchdecINS
procdecl 8 — nprocdecINS
where ntypedecINS =
parallel (map ntypedecl’ (neeS))
where ntypedecl'J =
consdef ((ownnessS — ownvariantNJ
else —.J),
combine (‘separate’,
wnitialcon (typeS)))
and narraydecINS =
let J, Z = unzip(map narraysegmentN (bodyS))
where narraysegmeniNS’ =
conslisting (ownnessS — map ouwnvariantN
(neeS")
else — nee '),
consBredes(‘A°,
conslisting (map (K" separate A7)
(nee 8%))
combines (‘expandioarray’
nbplisiN (sizeS),
@)
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consdef (conslisting J,
consBredex (27,
conslisting Z,
initialcon (bypeS)))
and nowngrraydeclresetNS =
sertal{(map nownarraysegmentresel (bodyS))
where nownarraysegmeniresetNS' =
serial (map nownarrayreset (neeS'))
where nownarrayreset J
consassigner (ownvartaniNJ,
combines (‘parearray’,
nbplist(sizeS’),
canslisting(zmmmriantNJ,
initialcon (typeS) )

where nbplisiNS’ =
conslisting (map nboundpairNS")
where nboundpairNS' =
conslisting (ownnessS — (‘— w0, “4o0?)
else — map narithexpNS')
and nswitchdecINS =
consdef( ),
consdef (neeS,
combines(‘arrangeasarray’,
conslisting (u(conslisting (17,
length(niensS)))),
conslisting (map ndesignexpN (niensS))))
and nprocdecINS =
let Dy", D", X" =
code (bodyS) — neode(derive(classifiedvariablesS) N')

(bodyS)
else — nlabeled (nstal ¢(derive (classifiedvariablesS)N)
(") (bodyS)
DI)”:
consdef (neeS,

conshexp(conslisting (formalsS),
(typeS = ‘command’ — X
else ~ consBredex (resultvariant (neeS),

)
initialcon (typeS)))
where X = conspredez(J,
arrangeasblock’ (parallel (map nspecN
(specpart8)),
D,
X7),
7)
where nualue J = consdef(J, combine(‘separate’, doJ))
and nspecNS = parallel(map nspec’N (bodyS))
where nspec’ NJ =
consdef (J,
combine((needsapplyingNJ — delayed
else — I) (transfer)
(specifierS)
)
where rec
nexp = neond(nsimp (ntypeprimary))
where ncond(ncategory) NS =
condsS — dexp (nBoolexpN (conditi
(ncategoryN (1starmS),
ncond(neategory) N 2ndarms)))
and nsimp (nprimary) NS =
Teomy s — i dicvariant(ratorS),
nsimp (nprimary) (rands))
2compoundS — combinelist (ratorS,
map (nsimp (nprimary))
(LstrandS, 2ndrandS))
and nlypeprimaryNS = constS — S
stmpleS — nvariable NS
else — nexpS

)
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and naritherp =
and nBoolexp = nez;
and ndesignex nexp
and nvaricbleNS = npleS — nidentifier NS
4S >
combine (nidentifierN (ratorS),
sting (mup norithezpN (randS)))

clse —» nfuncliondesigN'S
ipleS /\ putativeresultNS ~ resullvariantS
e — nvariableS
and nfunctio NS =

combinelist (nidentifier (ratorS),

map(delay-nexp) (randS))

and nlhsNS

where nidentifierNJT = needsapplyingNJ > doJ
ownidentifierNJ — ownvariantNJ
else —J

and initialeon A = A = ‘real’ — 0.0’
A = ‘integer’ — 0’
A = ‘Boolean’ — ‘false’
and lransfer S = simple S — S = ‘real’ — ‘floal’
8 = ‘integer’ - ‘unfloat’
8 = ‘command’ — combine
“in’, ‘null’)
S = ‘label’ — ‘I’
else — combine(“in’, S)
else —
conscondexp’ (‘atom’,
(t, combine("B’, 1)))
where ¢ = transform(rand S)

where needapplying N = needsapplying NU
putativeresultandneedsapplying N
and putativeresult N = iveresult NU

» ltandneedsapplying N
and monadicvariant J = (J = ‘+7) — 4y’
J == = =p’
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Sﬁmpi?S Sars ﬂﬁiﬁﬁN S

Cassignandhold(z) (y) = let x = veal y — float z |
integer y — unfloat x }

nprogram : ACOs - IAEs

o and nforstatementNS = consdef (conslisting J, i narithecp =
is merely an abbreviation for consleterp(D, X) = consBredex(nee D, X, niens D) let Dy, D, X = nlabeled (nstatementN I’} (bodyS) consredex (‘x, and /nz; IL/’:I‘p o :
. X L . e.g. consletexp (“letz = 2p ~ ¢, “c(x + 1)) = (Do, conslisting 7, and ’rbli, tiOP = N,
combine (‘f?, conslisting (combine(‘q’, @’), ‘U’)) otz = 2 — ¢ parallel( ), initialeon (typeS))) and n.e‘.,’a‘g;zy nexp "
» ¢ ’ and neariable! s1p m‘) > nidentifier NS
We start g - . B J«(I + 1) : combmehst(for and nownarraydeclresetNS = : o loment S

Y
. oA

= > e e e o o,

y \ (ratorS),
K .oithexpN (randS)) )

ree map [ L A gNS

~lwhere ree nassi gnexpNS =

needed late

unzip L = (n

. o

eg. unzip (i
¥ > doJ

> ownvariantNJ

combines (‘assignandhold’,

er’ — ‘unfloat’

ree select (p) (3

Next cong
tions. Thesd
namely cong,
also use tHE: Frand’ — combine

- o “in’, ‘null’)
namely nee, e
ine(“in’, S)

Y

Whine (B, 1))
combinelist (Figgt Y(L:and 8)
e.g. combindg 3

B o y aultandneedsapplying N

conspredez(J
ultandneedsapplying N

1?;:;22:%5%2 else — nassignexpN (rhsS)), |

e.g. consYrd
ie. (roug J- X

May(\ ) = Y

| mhsNQhsS)

conscondexp (3
e.g. conscong

“if (a4 "

Z: 4 GO T i e 2 4 = ”
> . - ~ _ o s o S 5 ~ Do~ - B iy, o BT T , "
delayed(F) = ‘c‘ombt’tw( B“ ) . where nopenprogramNLS = : where nnomecdecl NS = lypedeclS > ntypedecINS where nualue J = consdef(J, combine(‘separate’, doJ))
e.g. delayed( ﬂOiIZL ) = “Bfloat ., null(8) — (Lm}ie;led(”nsmtemmtl\/ L)(h»S;) arraydecl 8 —> narraydecINS and nspecNS = parallel(map nspec’N (bodyS))
ie. (roughly) ‘f where f(z) = float-x else — let j, N', N” = takenewlabelN i hs and nrecdeclNS = swilchdecl S — nswitchdecINS where nspec’ NJ =
serial(X) = rlclay(smzal (X conslisting M) let D", ,X i nlabeled(ntem ),(/ ) pmcdecl S — nprocdacllVS consdef(l
pgucqpiogron . . " < it - - - 4 =

~

Boolean y — in(Boolean)x

2nd({ye=x) )
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Landin’s description of ALGoL 60

Virtues

» a major example of a correspondence between a
real programming language and a semantic notation

= concisely documented Landin’s expert analysis

= demonstrated the use of AEs (ISWIM) as a meta-language
Drawbacks
p correspondence not tested/validated

= no tool support (?)
p sharing of addresses not defined

p fixed-point operator Y defined in terms of assigners

19



Strachey (1960s)



Christopher Strachey (1916-1975)

Towards a formal semantics. Bingus

Description
Languages

» cited by Landin as an alternative to IAEs

[

| - T.é.-STEEL, J
- LN f

- “to find, for each command, an AE denoting
the SECD-transformation it effects”

» introduces L-values and R-values
- an L-value “denotes an area of the store”
» refers to the fixed-point operator Y as “paradoxical”

- cites Landin’s “computing procedure” for it
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Assignments

» Without side-effects:

» With side-effects:

where a1 = L(€1,0)

and 89 = R

(Proz T = 2] = %o T (oo

..

. U&(R'(Ez,

_ - ,‘
e e g
P/
7 ]
) ' |
4]
ol
23
o
Y
N

0'))) (L'(€q, 0

)|

B
s,
K
N
59
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Strachey’s 1960s approach

Virtues

» used to give a correspondence between a developing
major programming language (CPL) and a semantic notation

p applicative definition of addresses, stores, assigners
= avoided the need for an abstract machine

Drawbacks

» meta-language left informal

I”

p fixed-point operator Y left “paradoxica
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Denotational semantics (1970s)



Autumn 1969

Dana Scott: Some reflections on
Strachey and his work.

» “The semester at Oxford [...] was a very
intense time, working with Strachey,
meeting Peter Landin, David Park,
John Reynolds, and many others. As |
recounted in my Turing Lecture, | did not
intend at all to construct models for

the type-free A-calculus...”

25



Scott-Strachey semantics

D. S. Scott, C. Strachey: Towards a mathematical
semantics for computer languages.

» least-fixed point operator Y no longer ‘paradoxical’

» correspondence between program phrases and their
denotations in Scott-domains (originally lattices, later cpos)

» separation between environments p<Env and stores Oe$
- C:Cmd — (Env— (S —Y9))

- E:Exp = (S— (TxY9))
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Scott-Strachey semantics

D. S. Scott, C. Strachey: Towards a mathematical
semantics for computer languages.

» Abbreviations:
- (fog)(0) =f(0") when g(0) = 0’
- (f*g)(0) =f(B)(0') when g(0) = (B.O") . nadic
- (P B)(0) = (B, O) notation!
» Clyos vi1=Ap. CLyil(p) - CLyol(p)

» Cle — Yo, Y11 = Ap. Cond(CLyol(p), CLY:1(p)) * ELe]



Scott-Strachey semantics

PDM: The mathematical semantics of ALGOL 60.

» Continuations-style
- C: Sta— (Env — (C— C)) where C=(S—5)
- R:Exp — (Env = (X = (K — C))) where K = (V — C)
- Yill Y21l 0 = vi{y2A{0}}

» C[Sta; Stal] = Ap.AO. C[Stalp || C[StaLlp || ©

» C[if Exp then Sta; else Sta,] = Ap. 6.
RIExpIp “boolean” { AB.B = C[Sta1p0, C[Sta,1pO }



Scott-Strachey semantics

PDM: The mathematical semantics of ALGoL 60.

» Continuations-style

k

case“Sta s Stal": €[ Stalp I &*[StaLlp | 8

witch labelof t 1in

d T e P R Y

{case"Sta": CfStalpb

My

“~F
g R
& $ 3
- q
3 ;¥
P R o B N I R BT R s S T O T D e G T e R U T T B T T O B T R o D B R A T P T A e |
g < - ST 5 | ~ ~ - . - ~ ~- . - ~ - . - - _ - . - =

fcase"if Txp then Sta else Sta, ‘
i  R[Explp"boolean" {XB

2

8 +E[[Sta I]pe Cl[Sta ]]pe}
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VDM semantics

H. Bekic, D. Bjorner, W. Henhapl, C. B. Jones, P. Lucas:
A formal definition of a PL/I subset.

» Combinators: abbreviations with fixed behaviour
(definitions dependent on the domains of denotations)

{for i=m to n do S(i)}

monadic
notation!
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VDM semantics

W. Henhapl, C. B. Jones: A formal definition of ALGoL 60.

» M: Stmt — ENV =>
» M: ExXpr — ENV => VAL

» M[mk-Compound(<sl,s2>)](env) =
M[sl](env); M[s2](env)

» M[mk-If(e,th,el)](env) =
def b: M[e](env);
1f b then M[th](env) else M[el](env)
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VDM semantics

W. Henhapl, C. B. Jones: A formal definition of ALGoL 60.

M: Unlabstmt -+ STMTENY =>
M: Fxpr -+ EXPRENV => VAL

»

IM{mk~Compstmt(stl)](stenv) A |

for i=1 to lenstl do M[s-sp(stl[i])](stenv)

w

——

fM[mknCOndstmt(e,th,el)](stmtenv) A ;
} let (,env,cas) = stmtenv in |
def b : Mlellenv,cas];
tf b then Ml s-sp(th)](stmtenv) else M[s—sp(el)](stmtenv)f
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Further reading

PDM: VDM semantics of programming languages:
combinators and monads.

C. B. Jones: Semantic descriptions library
homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

» searchable on-line resources w

= descriptions of ALGOL 60 in various frameworks

» scanned manuscripts

- VDM descriptions of programming languages
- VDL description of PL/I
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http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/
http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

CBJ's contribution to PDM "Semantics Library" - Cliff B Jones 2

| < | > | 12] \E\ | + | @ homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/ (Wl Reader \_6_[

Cliff B Jones HOME BO RESEARCH PUBLICATIONS PEOPLE  CONTACT

Semantic descriptions library

These are my (current, evolving) contributions to the "library of semantics” being developed in collaboration with

the PLanCompS project.

Searchable on-line resources
Thanks to painstaking work by Roberta Velykiene, the following scanned PDFs have an overlay which makes
searching possible (even for Greek letters!)

e Peter Lauer's VDL description of ALGOL 60 (TR 25.088)
o A "functional” semantics of ALGOL 60 (Notice that this scanned version deliberately omits the pages that

contained the ALGOL report that were lined-up with the corresponding formulae)
o Peter Mosses' (Oxford) Denotational descriptionof ALGOL 60
e A (the second) VOM description of ALGOL 60
o Are-LaleXed version of the ALGOL 60 report

Scanned manuscripts
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A current project



Component-based semantics

. open-ended collection
fundamental programming e

constructs (funcons)

translation
(correspondence)

components-off-the-shelf

evolving languages
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Component-based semantics

Semantics
execute[ [ _:(statement ( ";' statement )*) ]] : commands

Rule
execute[[ S1 ";' S2 ...]] =
sequential(execute[ [ S1]], execute[[SZ2 ...]1]1)

Rule
execute[[ "if' E "then' S1 'else' SZ ]] =
i1f-true(evaluate[[E]], execute[[S1]], execute[[SZ]])
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Reusable components

Fundamental constructs (funcons)
» correspond to programming constructs
- directly (sequential, scope,...)
- special case (if-true, apply, assign,...)
- implicit (bound-value,...)
» and have (when validated and released)

- fixed notation

- fixed behaviour specified/proved
once and for all!
- fixed algebraic properties
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PLANCOMPS project (2011-2015)

Foundations

» component-based semantics, bisimulation [Swansea]
» GLL parsing, disambiguation [RHUL]

Case studies

» CAML LIGHT, C#, JAVA [Swansea]

Tool support

» IDE, funcon interpreter/compiler [RHUL, Swansea]
Digital library

» interface [City], historic documents [Newcastle]
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http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/
http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

Summary

ALGOL 60

L

~
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e

PLANCOMPS

L ny *

PDM

A-notation +Y

abstract machines Scott-domains modular SOS

Landin

A-notation +Y
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