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1964
The mechanical evaluation of expressions
By P. J. Landin

This paper is a contribution to the "theory" of the activity of using computers. It shows how
some forms of expression used in current programming languages can be modelled in Church's
X-notation, and then describes a way of "interpreting" such expressions. This suggests a
method, of analyzing the things computer users write, that applies to many different problem
orientations and to different phases of the activity of using a computer. Also a technique is
introduced by which the various composite information structures involved can be formally
characterized in their essentials, without commitment to specific written or other representations.

Introduction
The point of departure of this paper is the idea of a

machine for evaluating schoolroom sums, such as
1. (3 + 4)(5 + 6)(7 + 8)
2. if 219 < 312 then 12V2 else 5 V 2

17 cos n/l7 ~ "V̂ 1 ~ 1 7 sin3 If
l7 cos TT/17 + V(l + 17 sin

Any experienced computer user knows that his
activity scarcely resembles giving a machine a numerical
expression and waiting for the answer. He is involved
with flow diagrams, with replacement and sequencing,
with programs, data and jobs, and with input and output.
There are good reasons why current information-
processing systems are ill-adapted to doing sums.
Nevertheless, the questions arise: Is there any way of
extending the notion of "sums" so as to serve some of
the needs of computer users without all the elaborations
of using computers? Are there features of "sums" that
correspond to such characteristically computerish con-
cepts as flow diagrams, jobs, output, etc.?

This paper is an introduction to a current attempt to
provide affirmative answers to these questions. It
leaves many gaps, gets rather cursory towards the end
and, even so, does not take the development very far.
It is hoped that further piecemeal reports, putting right
these defects, will appear elsewhere.

Expressions
Applicative structure

Many symbolic expressions can be characterized by
their "operator/operand" structure. For instance

al(2b + 3)
can be characterized as the expression whose operator
is V and whose two operands are respectively 'a,' and the
expression whose operator is ' + ' and whose two
operands are respectively the expression whose operator
is ' x ' and whose two operands are respectively '2' and
'6,' and '3. ' Operator/operand structure, or "applica-
tive" structure, as it will be called here, can be exhibited
more clearly by using a notation in which each operator

is written explicitly and prefixed to its operand(s), and
each operand (or operand-list) is enclosed in brackets,
e.g.

/(a,+(x(2,6),3)).

This notation is a sort of standard notation in which
all the expressions in this paper could (with some loss
of legibility) be rendered.

The following remarks about applicative structure
will be illustrated by examples in -which an expression is
written in two ways: on the left in some notation whose
applicative structure is being discussed, and on the right
in a form that displays the applicative structure more
explicitly, e.g.

/(fl,a/(2b + 3)
(a + 3)(6 - 4) +
(c-5)(d-6)

In both these examples the right-hand version is in the
"standard" notation. In most of the illustrations that
follow, the right-hand version will not adhere rigorously
to the standard notation. The particular point illus-
trated by each example will be more clearly emphasized
if irrelevant features of the left-hand version are carried
over in non-standard form. Thus the applicative
structure of subscripts is illustrated by

Oib,, a{j)b(J,k).
Some familiar expressions have features that offer

several alternative applicative structures, with no
obvious criterion by which to choose between them.
For example

3 + 4 + 5 + 6
f +(+(+(3, 4), 5), 6)
\ +(3, +(4, +(5, 6)))
[£'(3,4,5,6)

where 2 ' is taken to be a function that operates on a
list of numbers and produces their sum. Again

/ t («. 2)
\ square (a)

where t is taken to be exponentiation.
308

 by guest on D
ecem

ber 2, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

5



1964

The mechanical evaluation of expressions.
The Computer Journal (1964) 6: 308-320.

‣ applicative expressions (AEs)

- λ-abstraction, application

‣ structure definitions

- algebraic data types

‣ an abstract machine

- stack (S), environment (E), control (C), dump (D)
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Applicative expressions (AEs)

Mechanical evaluation
By a X-expression we mean, provisionally, an expression

characterized by two parts: its bound variable part,
written between the 'A' and the ' . ' ; and its X-body,
written after the ' . ' . (A more precise characterization
appears below.)

Some of the right-hand versions appearing above
contain a A-expression. Some of those below contain
several A-expressions, sometimes one inside another.
This paper shows that many expressions can be con-
sidered as constructed out of identifiers in three ways:
by forming A-expressions, by forming operator/operand
combinations, and by forming lists of expressions. Of
these three ways of constructing composite expressions,
the first two are called "functional abstraction" and
"functional application," respectively. We shall show
below that the third way can be considered as a special
case of functional application and so, in so far as our
discussion refers to functional application, it implicitly
refers also to this special case.

We are, therefore, interested in a class of expressions
about any one of which it is appropriate to ask the
following questions:

Ql. Is it an identifier? If so, what identifier?
Q2. Is it a A-expression? If so, what identifier or

identifiers constitute its bound variable part and
in what arrangement? Also what is the expression
constituting its A-body?

Q3. Is it an operator/operand combination? If so>
what is the expression constituting its operator?
Also what is the expression constituting its
operand?

We call these expressions applicative expressions (AEs).
Later the notion of the "value of" (or "meaning of,"

or "unique thing denoted by") an AE will be given a
formal definition that is consistent with our correspond-
ence between AEs and less formal notations. We shall
find that, roughly speaking, an AE denotes something
as long as we know the value of each identifier that
occurs free in it, and provided also that the expression
does not associate any argument with a function that
is not applicable to it. In particular, for a combination
to denote something, its operator must denote a function
that is applicable to the value of its operand. On the
other hand, any A-expression denotes a function;
roughly speaking, its domain (which might have few
members, or even none) contains anything that makes
sense when substituted for occurrences of its bound
variable throughout its body.

Given a mathematical notation it is a trivial matter
to find a correspondence between it and AEs. It is less
trivial to discover one in which the intuitive meaning
of the notation corresponds to the value of AEs in the
sense just given. A correspondence that meets this
condition might be called a "semantically acceptable"
correspondence. For instance, someone might con-
ceivably denote the sum

vr+vr+ . . . +vr+s_+s_1

of a segment of a vector by
»«.

Themostdirect rendering of this as anAEis somethinglike
sum (v(r), s).

However, this is not a semantically acceptable cor-
respondence since it wrongly implies dependence on
only one element of v, namely vr. The same criterion
prevents A from being considered as an operator, in
our sense of that word; more precisely it rules that

X(x, x2 + 1)
incorrectly exhibits the applicative structure of
'Ax.x2 + 1.'

We are interested in finding semantically acceptable
correspondences that enable a large piece of mathe-
matical symbolism (with supporting narrative) to be
rendered by a single AE.

Structure definitions
AEs are a particular sort of composite information

structure. Lists are another sort of composite informa-
tion structure. Seyeral others will be used below, and
they will be explained in a fairly uniform way, each sort
being characterized by a "structure definition." A
structure definition specifies a class of composite informa-
tion structures, or constructed objects (COs) as they will
be called in future. It does this by indicating how many
components each member of the class has and what sort
of object is appropriate in each position; or, if there
are several alternative formats, it gives this information
in the case of each alternative. A structure definition
also specifies the identifiers that will be used to designate
various operations on members of the class, namely
some or all of the following:

(a) predicates for testing which of the various
alternative formats (if there are
alternatives) is possessed by a given
CO;

(b) selectors for selecting the various components
of a given CO once its format is
known;

(c) constructors for constructing a CO of given
format from given components.

The questions Ql to Q3 above comprise the main part
of the structure definition for AEs. What they do not
convey is the particular identifiers to be used to designate
the predicates, selectors and constructors. Future
structure definitions in this paper will be laid out in
roughly the following way:

An AE is either
an identifier,

or a X-expression (Xexp) and has a bound variable (by)
which is an identifier or
identifier-list,

and a X-body (body)
which is an AE,
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Mechanical evaluation

or a combination and has an operator (rator)
which is an AE,

and an operand (rand)
which is an AE.

This is intended to indicate that 'identifier,' 'A-
expressiori and 'combination1 (and also the abbreviations
written after them if any) designate the predicates, and
'bv,' 'body,' 'rator,' 'rand' (mentioning here the
abbreviated forms) designate the selectors. We consider
a predicate to be a function whose result for any suitable
argument is a "truth-value," i.e. either true or false.
For instance, if A' is a A-expression, then the predicate
Xexp applied to X yields true, whereas identifier yields
false; i.e. the following equations hold:

Xexp X = true
identifier X = false.

(It will be observed that, by considering predicates as
functions, we are led into a slight conflict with the
normal use of the word "apply." For instance, in
normal use it might be said that the predicate even
"applies to" the number six, and "does not apply to"
the number seven. We must here avoid this turn of
phrase and say instead that even "holds for," or "yields
true when applied to," six; and "does not hold for," or
"yields false when applied to," seven.)

The constructors will not usually be named explicitly.
Instead we shall use obviously suggestive identifiers
such as 'constructXexp.' E.g. the following equations
hold:

identifier (constructXexp (J, X)) = false
Xexp (constructXexp (J, X)) = true
bv (constructXexp (J, X)) = J
constructXexp (bv X, body X) = X

and many others. (More precisely, each of these
equations holds provided J and X are such as to make
both sides meaningful. Thus the first three hold
provided J is an identifier or list of identifiers and X is
an AE. Again, the last holds provided I is a
A-expression.)

A structure definition can also be written more
formally, as a definition with a left-hand side and a
right-hand side. The left-hand side consists of all the
identifiers to which the structure definition gives mean-
ing. The right-hand side is an AE containing references
to the component-classes involved (e.g. some class of
character-strings, in the case of AEs that are identifiers)
and also to one or more of a small number of functions
concerned with classes of COs. However, in this
paper we shall not formalize the notion of structure
definitions, and shall write any we need in the style
illustrated above.

Function definitions
In ordinary use, definitions frequently give a functional,

rather than numerical, meaning to the definiendum by
using a dummy argument variable. This can be rendered

as an explicit definition with a A-expression for its right-
hand side, e.g.

f(y) = / =
So an expression using an auxiliary function definition
can be rendered by using two A-expressions, one for its
operator and one for its operand, e.g.

+ f(A)}[Xy.y(y + 1)].
where f(y) = y(y + 1)

A group of auxiliary definitions may include both
numerical and functional definitions, e.g.

{X(a,b,f).f(a + b,a-b)
f(a -b,a + b)}

[33, 44, A(w, v). uv(u + v)].

f(a +b,a-b) +
f(a -b,a+b)

where a = 33
and b = 44
and /(M, V) = uv(u + v)
When a A-expression is written as a sub-expression of

a larger expression, the question may arise: how far to
the right does its body extend? This question can
always be evaded by using enough brackets, e.g.

(X(u,v).(uv(u+v))).
However, to economize in brackets, we adopt the
convention that it extends as far as is compatible with
the brackets, except that it is stopped by a comma.
Another way of saying this is that the "binding power"
of the ' . ' is less than that of"functional application",
multiplication and all the written operators such as
' + . ' 7.' etc-> DUt exceeds that of the comma. For
example:

Asia)) + g(f(b))
where f(z) = z2 + 1

and g(z) = z2 — 1
[Xz.z2 + 1, A z . z 2 - 1].

An identifier may occur in the bound variable part of
a A-expression (either constituting the entire bound
variable, or as one item of it). Apart from this, every
written occurrence of AE is in one of the following four
sorts of context:

(a) It is the A-body of some A-expression.
(b) It is the operator of some combination.
(c) It is the operand of some combination.
(d) It is a "complete" AE occurring in a context of

English narrative, or other non-AE.

Each of the three formats of AE can appropriately
appear in any of the four sorts of contexts. We have
already seen that A-expressions, like identifiers, can
appropriately occur both as operators and as operands.
Below we shall find combinations appearing as operators,
and A-expressions appearing as A-bodies. These last
two possibilities are both associated with the possibility
that a function might produce a function as its result.
Together with more obviously acceptable possibilities,
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Applicative expressions (AEs)

‣ AEs (X) generally have values (in environments E)

- independently of any machine

Mechanical evaluation

of functions, etc. More precisely, an AE X has a value
(or rather might have a value) relative to some back-
ground information that provides a value for each
identifier that is free in X. This background information
will be called the environment relative to which evaluation
is conducted. It will be considered as a function that
associates with each of certain identifiers, either a
number, or a list, or a function, etc. Each identifier to
which an environment E gives a value is called a constant
of E, and each object "named," or "designated," by a
constant of E (possibly by several) is called a primitive
of E. So E is a function whose domain and range
comprise respectively its constants and its primitives.

If we let
val(E)(X)

denote the value of X relative to E (or in E for short),
the function that val designates can be specified by means
of three rules, Rl, R2 and R3. These correspond to the
three questions, Ql, Q2 and Q3 that were introduced
earlier to elucidate the structure of AEs.

Rl. If A' is an identifier, valEX is EX;
(R2. appears below);
R3. If X is a combination, valEX can be found by

first subjecting both its operator and operand to
valE, and then applying the result of the former
to the result of the latter.

The rules Rl and R3 are enough to specify valEX
provided that A'contains ho A-expressions. For example,
consider an environment in which the identifier k is
associated with the number 7 and the identifier p with
the truthvalue false, and other identifiers have their
expected meanings. Then Rl and R3 suffice to fix the
value of, say,

if((219 < 312) yp)(sin, cos)(nlk).
This example illustrates the need for evaluating the
operator of a combination as well as its operand.

R2. If A' is a A-expression, valEX is a function. Like
any function it can be specified by specifying
what result it produces for an arbitrary argument,
and we now do this as follows: valEX is that
function whose result for any given argument
can be found by evaluating bodyX in a new
environment derived from £ in a way we shall
presently describe. For example, suppose E is
the environment postulated above, and X is the
A-expression 'Xr.k2 + r2.' Then its value in E
is that function whose result for any given argu-
ment, say 13, can be found by evaluating
'k2 + r2' in a new environment E', derived from
E. To be precise, E' agrees with E except that
it gives the value 13 to the identifier r.

More generally, this derived environment consists of
E, modified by pairing the identifier(s) in bvX with
corresponding components of the given argument x
(and using the new value for preference if any variable

in bvX coincides with a constant of E). We denote this
derived environment by

derive(assoc(bvX, x))E.
We shall describe below a mechanical process for

obtaining the value, if it exists, of any given AE relative
to any given environment. This process can be imple-
mented with pencil and paper, or (as we shall briefly
sketch) with a digital computer. The rules Rl and R3
provide a criterion for deciding Whether or not the
outcome of this process is in fact the value as we under-
stand it.

The three rules can be formalized as a definition of
val, thus:
recursive valEX=identifierX'-> EX

\expX-+f
where fx=val(derive(assoc(bvX,x))E)

(bodyX)
else -+ {valE(ratorX))[valE(randX)].

For example, suppose thrice is the function-producing
function defined by

thrice(f)(x) = f(f(f(x))).
Then it follows from the above definition of val that the
values of the following fivee AEs,

square 5
thrice square 5
thrice square (thrice square 5)
thrice (thrice square) 5
thrice thrice square 5

are respectively 52, 523, 5*6, 52' and 5227. The reader
may be better equipped to check this assertion when he
has read the next Section, which describes an orderly
way of evaluating AEs.

The set of objects that can be denoted by an AE
relative to an environment E, is the range of the function
valE. It contains all the primitives of E, and everything
produced by such an object, and every function that can
be denoted by a A-expression.

Mechanical evaluation
In order to mechanize the above rule, we represent

an environment by a list-structure made up of name-
value pairs. There is a function designated by location
such that if E* is this structure and Xis an identifier then

locationE*X
denotes the selector that selects the value of X from E*.
So if E* represents the environment E then the following
equation holds:

valEX = locationE*XE*.
We shall not bother below to distinguish between E
and £*.

Also we represent the value of a A-expression by a
bundle of information called a "closure," comprising
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Syntactic sugar for AEs

‣ Lists

‣ Conditional expressions

‣ Recursive definitions, “paradoxical” fixed-point operator (Y)

Mechanical evaluation

operand terms. By a circular definition we mean an
implicit definition having the form

i.e. a definition of x in which x is referred to one or
more times in the definiens. For example, suppose 'M'
designates a list-structure, then

(a, M, (b, c))
denotes a list-structure whose second item is the list-
structure M. The equation

L = (a, L, (b, c))
is satisfied by the "infinite" list-structure containing
three items, of which the first is a, the third is (b, c) and
the second is the infinite list-structure whose first item
is a, and whose third item is (b, c) and whose second,
. . . and so on.

So the above equation may be considered as a circular
definition that associates this "infinite" list-structure
with the identifier 'Z,.'

Again
fin) = if n = 0 then 1 else nfin — 1)

i.e.
/ = An.if n = 0 then 1 else nf(n — 1)

may be considered as a circular definition of the factorial
function. (In this brief discussion the important
question of whether each circular definition characterizes
a unique object will be skipped.)

Making use of A, any circular definition can be
rearranged so that there is just one self-referential
occurrence, and moreover so that the single occurrence
constitutes the operand of the definiens, e.g.

L = (a, L, (b, c)) L = {XL'.(a, V, [b, c))}L
fin) = if n = 0 then 1 / = {Xf. An . if n = 0 then 1

else nfin - 1) else nfin - 1)}/.
Notice that, had we used 'V and ' / ' instead of 'L"

and ' / " they would still have been bound and so would
not have constituted self-referential occurrences.

A circular definition of the form

x = Fx

(such as the last two above) characterizes an object as
being invariant when transformed by the function F,
i.e. as the "fixed-point" of F. If we use ' Y' to designate
the function of finding the fixed-point of a given function,
such a circular definition can be rearranged so that it is
formally no longer circular:

x = YF.

Thus the above examples become

L = (a, L, (b, c)) L = YXL.{a, L, (b, c))
fin) = if n = 0 then 1 / = FA/. An.if n = 0 then 1

else nfin — 1) else nfin — 1).

Notice that, according to the above treatment of con-

ditional expressions, the existence' of /(0) does not
involve the existence of/(—I). Notice also that Y
may produce a function, and hence gives rise to com-
binations whose operators are combinations, e.g.

{YXf. Xn.ifn = 0 then 1 else nfin - l)}6
is a meaningful combination. In fact its value is 720.

This device can also be used for a group of "jointly
circular" or "simultaneously recursive" definitions, e.g.

fx = F[f, g, x] if, g) = YXtf, g)• (*x.F[f, g, x],
and gx = G[f, g, x] Xx. G[f, g, x]).
So the fixed-point of a function might be a list of

functions. This gives rise to the possibility that a
dyadic function might appear with what looks like one,
rather than two, arguments, e.g. when the above
jointly circular functions appear in an auxiliary
definition:

figa) + gifb) {Xif, g) .figa) + gifb)}
where fx = Fif, g, x) [FA(/, g). (Ax .Ftf, g, x),

and gx = Gif g, x) Xx. G(f, g, *))].
Notice that the circularity is explicitly indicated in

the right-hand version, whereas the left-hand version is
only recognizable as circular by virtue of our comments
about it or by common sense. In the next Section we
shall extend our hitherto informal use of where so as to
provide a match for any use of A.

The difference between structure and written representation
Our notation for AEs is deliberately loose. There

are many ways in which we can write the same AE,
differing in layout, use of brackets and use of infixed
as opposed to prefixed operators. However, they are
all written representations of the same AE, in the sense
that the information elicited by the questions Ql, Q2
and Q3 above are the same in each case. This is the
essential information that characterizes the AE. We
call this information the "structure" of the AE. Our
laxity with written representations is based on the
knowledge that any expression we write could, at the
cost of legibility, have been writter ;n standard form,
with exclusively prefixed operators •<. J every bracket in
place.

One of the syntactic liberties that we shall take is to
use where instead of A. More precisely, we shall use an
expression of the form

L where X = M
as a "syntactic variant" of

{XX.L}[M]
even in cases that go rather further than the familiar
use of where, e.g.

n2+3n + 2 {Xn.n2 + 3n + 2}\n + 1]
where n = n -\- 1
xy{x + y) {Xy .{Xx. xyix + y)}
where x = a2 + ay/y [a2 + a-\/y]}
where y = a2 + b2 [a2 + b2].
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Mechanical evaluation

So if L is a list whose k items are au a2, • • •, ak, then
prefix(x)L

denotes a list whose k + 1 items are x, au . . .,ak. The
function prefix is function-producing and so gives rise
to combinations whose operators are combinations. It
can be denned in terms of constructlist as follows:

prefix{x) = \L.constructlist(x, L).
By a natural extension of the notation for function
definitions this can also be written

prefix{x){L) = constructlist(x, L).
The following examples illustrate the applicative

structure we are now imposing on operand-lists of
length two or more, and of length zero:

f(a, b, c) /{prefix a(prefix b(prefix c niillist)))
a + b -\-{prefix a(prefix b(nullist)))
constructnullistQ constructnullist(nullist).
Notice that while it is meaningful to ask whether a

function is dyadic (i.e. has arguments restricted to lists
of length two), there is no significance to asking whether
a function is monadic since any function may be denoted
in combination with a single operand rather than a list
of operand expressions.

For the rare cases in which we wish to refer to a list
with just one item, we use the function defined as
follows:

unitlist{x) = prefix x nullist.
We shall use the following abbreviation for 'prefix x

V:
x:L.

So, e.g.
x,y,z = x:(y,z) = -x:(y : unitlistz) = x :{y : (z : ())).
We shall treat':' as more "binding" than ',', e.g.

2nd(2nd(L, x:M, N)) = 1st M.
The last example refers to a list whose items include

a list. We admit this possibility and write, e.g.
(a, b),(c,(),e), unitlistf.

In what follows, a list whose items include lists (i.e. a
list which has items that are amenable to null, 1st, 2nd,
etc.) will be called a "list-structure."

Conditional expressions
We now show how AEs provide a match for con-

ditional expressions, e.g. for
if a < b then a1 else b1. (A)

This expression somewhat resembles
/th(a7, b1)

where / is a computed index number, used to select an

item from a list which is not referred to elsewhere. So,
we consider 'if to be an identifier designating a function-
producing function such that

//(true) = 1st
//(false) = 2nd.

Then (A) is equivalent to the following AE:

if (a < b)(a\ V). (Al)

This rendering is not, however, adequate. For it
would match

if a = 0 then 1 else I/a
by

(B)

(Bl)
But the value of this expression, i.e. to be more explicit,
of

if (a = Q)(prefix l(prefix(l/a)( ))) (Bl')

depends on the value of the sub-expression 'I/a,' and
hence only exists if I/a exists. So (Bl) is not an
acceptable rendering of (B) if a is zero and division by
zero is undefined. More generally, this method of
rendering conditional expressions as AEs does not meet
our criterion of semantic acceptability unless the domain
of every function is artificially extended to contain any
argument that might conceivably arise on either
"branch" of a conditional expression. We now present
another method that avoids any such commitment.

Consider instead the following alternative

i/(a = O)(Ax.l, (B2)

where 'x' is an arbitrarily chosen variable and '3' is
an arbitrarily chosen operand. Unlike (Bl), (B2) has
a value even if a = 0; for, Xx.l/a denotes a function
even if a = 0 (albeit with null domain—this is in
accordance with our view of the "value" of an expression,
as introduced informally in a previous Section and
formalized in a subsequent one). So (B2) is precisely
equivalent to (B) in the sense that either they are
equivalent or they are both without value.

The arbitrary V and '3' in (B2) can be obviated.*
For the bv of a A-expression can be a list of identifiers,
and in particular a list whose length is zero. Such a
A-expression is applicable to an argument list of the
same length. This suggests that all conditional expres-
sions can be rendered in a uniform way as follows:

if a < b then a1 else b1 if {a < 6)(A().a7,
if a = 0 then 1 else I/a if (a = 0)(A( ). 1, A( ). \/a)().

Recursive definitions
The use of self-referential, or "circular," or what

have come to be called in the computer world,
"recursive" definitions can also be rendered in operator/

* The device given here was suggested by W. H. Burge.
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Mechanical evaluation

So if L is a list whose k items are au a2, • • •, ak, then
prefix(x)L

denotes a list whose k + 1 items are x, au . . .,ak. The
function prefix is function-producing and so gives rise
to combinations whose operators are combinations. It
can be denned in terms of constructlist as follows:

prefix{x) = \L.constructlist(x, L).
By a natural extension of the notation for function
definitions this can also be written

prefix{x){L) = constructlist(x, L).
The following examples illustrate the applicative

structure we are now imposing on operand-lists of
length two or more, and of length zero:

f(a, b, c) /{prefix a(prefix b(prefix c niillist)))
a + b -\-{prefix a(prefix b(nullist)))
constructnullistQ constructnullist(nullist).
Notice that while it is meaningful to ask whether a

function is dyadic (i.e. has arguments restricted to lists
of length two), there is no significance to asking whether
a function is monadic since any function may be denoted
in combination with a single operand rather than a list
of operand expressions.

For the rare cases in which we wish to refer to a list
with just one item, we use the function defined as
follows:

unitlist{x) = prefix x nullist.
We shall use the following abbreviation for 'prefix x

V:
x:L.

So, e.g.
x,y,z = x:(y,z) = -x:(y : unitlistz) = x :{y : (z : ())).
We shall treat':' as more "binding" than ',', e.g.

2nd(2nd(L, x:M, N)) = 1st M.
The last example refers to a list whose items include

a list. We admit this possibility and write, e.g.
(a, b),(c,(),e), unitlistf.

In what follows, a list whose items include lists (i.e. a
list which has items that are amenable to null, 1st, 2nd,
etc.) will be called a "list-structure."

Conditional expressions
We now show how AEs provide a match for con-

ditional expressions, e.g. for
if a < b then a1 else b1. (A)

This expression somewhat resembles
/th(a7, b1)

where / is a computed index number, used to select an

item from a list which is not referred to elsewhere. So,
we consider 'if to be an identifier designating a function-
producing function such that

//(true) = 1st
//(false) = 2nd.

Then (A) is equivalent to the following AE:

if (a < b)(a\ V). (Al)

This rendering is not, however, adequate. For it
would match

if a = 0 then 1 else I/a
by

(B)

(Bl)
But the value of this expression, i.e. to be more explicit,
of

if (a = Q)(prefix l(prefix(l/a)( ))) (Bl')

depends on the value of the sub-expression 'I/a,' and
hence only exists if I/a exists. So (Bl) is not an
acceptable rendering of (B) if a is zero and division by
zero is undefined. More generally, this method of
rendering conditional expressions as AEs does not meet
our criterion of semantic acceptability unless the domain
of every function is artificially extended to contain any
argument that might conceivably arise on either
"branch" of a conditional expression. We now present
another method that avoids any such commitment.

Consider instead the following alternative

i/(a = O)(Ax.l, (B2)

where 'x' is an arbitrarily chosen variable and '3' is
an arbitrarily chosen operand. Unlike (Bl), (B2) has
a value even if a = 0; for, Xx.l/a denotes a function
even if a = 0 (albeit with null domain—this is in
accordance with our view of the "value" of an expression,
as introduced informally in a previous Section and
formalized in a subsequent one). So (B2) is precisely
equivalent to (B) in the sense that either they are
equivalent or they are both without value.

The arbitrary V and '3' in (B2) can be obviated.*
For the bv of a A-expression can be a list of identifiers,
and in particular a list whose length is zero. Such a
A-expression is applicable to an argument list of the
same length. This suggests that all conditional expres-
sions can be rendered in a uniform way as follows:

if a < b then a1 else b1 if {a < 6)(A().a7,
if a = 0 then 1 else I/a if (a = 0)(A( ). 1, A( ). \/a)().

Recursive definitions
The use of self-referential, or "circular," or what

have come to be called in the computer world,
"recursive" definitions can also be rendered in operator/

* The device given here was suggested by W. H. Burge.
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A Correspondence Between 
ALGOL 60 and Church's Lambda- 
Notation: Part I* 
its- P. J. I,~XDtN} 

This paper describes how some of the semantics of ALGOL 
60  can be formalized by establishing a correspondence 
between expressions of ALGOL 60 and expressions in a 
modified form of Church's n-notation. First a model for com- 
puter languages and computer behavior is described, based on 
the notions of functional application and functional abstraction, 
but also having analogues for imperative language features. 
Then |his model is used as an "abstract object language" into 
which ALGOL 60 is mapped. Many of ALGOL 60's features 
emerge as particular arrangements of a small number of struc- 
tural rules, suggesting new classifications and generalizations. 

The correspondence is first described informally, mainly by 
illustrations. The second part of the paper gives a formal 
description, i.e. an "abstract compiler" into the "abstract object 
language." lhis is itself presented in a "purely functional" 
notation, that is one using only application and abstraction. 

/ii 
C o l l t e n  [S  

(Part J) 

Introduction 
Motivatioi~ 

[ ,O lit-tel" Ill Prospects 
Short-term Aims 

[mper~ttive Applieativ(! ]!]Xl)r(~ssions 
A Gene r :d i za t i on  of , I mn p s  
IIItrodlleillb~ (;Ollllii}~ilds in to  a I"Llne- 

tii/tlal S(:} i() IIL(~ 
Tim Sllaring Machine 
A L G O l ,  60 as Sugared I A E 8  

I n f o r m a l  Presentation of the Corre-  
S !~)()II (]ellCe 
Brief Ou'Hine 
The  DomMn of Reference of 

AI,GOL 60 
Fo>lists  
Streams 
Types  

Tlhe ( ' o n s t a n t s  a n d  Primitives of 
ALGOL 60 

[[lustrat[otl~ of the (.~ortespon(lenee 
Identifiers 
Variables 
Ex pressions 
Blocks 
Pseudo blocks 
Declarations 
Statements 
Labels and Jumps 
Own Identifiers 

(Part H) 

I"ormal Presentation of the Con'espoud~ 
ence 

Abstract ALGOL 
The Synthetic Syntax I"unction 
The Soma, l i l l e  IFtlltctioli 

( : (mel l l s ion  

I n t r o d u c t i o n  
Anyone familiar with both (~hurch's X-calculi (see e.g. 

[7]) attd ALTO], 60 [61 will have noticed a superticial re- 
semblance t)etween the uay variables tie up with the X's 
in a nest of X-expressions, and the way identifiers tie up 
wiltt the headings in a nesl, of procedures and blocks. Some 
may also have observed that in, say 

{\f.f(a) + f(b)} [Xx.:c 2 + px + q] 
the two X-expressions, i.e. the operator and the opcr~md, 
play roughly the roles of Mock-body and procedure- 
declaration, respectively. The present paper explores this 
resemblance ii~ some detail. 

The presenlal~ion falls into four sections. Tim first see- 
Lion, f(illowing this introduegi(in, gives some moi;ivation 
for examining lhe e(n'respondenee. The second section de- 
scribes mt abstxaeL language based on Ctmreh's X-calculi. 
This abstrae( language is a development of the AE/SECI)  
system presented in [3] and sontc acquaintance with thai; 
paper (hereinMter referred to as [SiEE]) is assumed here. 
The third seclion describes inforlnally, mMnly by illus- 
lral;ions, a correspondence between expressions of ALCOL 
60 and expressions of the abstract language. The last 
see(ion formalizes tiffs eorrespondenee; i( first describes 
a sort of "abstracl~ ALcol, 60" and then presents Lwo func- 
tiotts that map expressions of ~bstraet AL(alL 60 inlo, on 
l;he one hand, AL(~OL 60 texl;s, and on the other hand 
expressions of the abstrac{; language. 

Mot iva t ion  
It seems possible that the correspondence might: form 

the basis of a formal description of the semantics of AL(;OL 
60/  As presented here it reduces the problem of specifying 
ALt,;OL 60 semani.ies t,o t.hal~ of specifying t)he semantics of 
a sLrueturalty simpler language. The formal treaLment of 
the latter problem is beyond the scope of this paper, and 
hence likewise a formM t)roof l~hat~ the correspondence de- 
scribed here is eorrecl). [1~ is hoped that~ the informM at- 
count of the semantics of the abstract "object language" 

* Part I [  of this paper, which gives bite FormM Presenta- 
tion of the Correspondence, will appear in the March, 1965 issue 
of the Communications of the ACM. 

Present address: Univac Divis ion of Sperry Rand Corpora- 
lion, Systems Programming Research, New York, New York. 

* This view is expanded in [10]. 
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A Correspondence Between 
ALGOL 60 and Church's Lambda- 
Notation: Part II* 
BY P .  d. LANDIN'I  

I n t r o d u c t i o n  
The first part  of this paper" described an abstract lan- 

guage based on Church's X-calculi, and comprising ex- 
pressions called "imperative applicative expressions" 
(IAEs). An informal aeeount was given of the way IAEs 
ean be considered as a generMization and structural 
simplification of ALGOL 60. The present part  presents a 
formal mapping of ALc~o~ 60 into IAEs. 

Fo rmal  P r e s e n t a t i o n  of  th e  Correspondence  
The correspondence between AL~or, 60 arid IAEs is 

presented here lm'gely in terms of AEs, or more precisely, 
in AEs written with an informM syntax that  was mostly 
described in [MEE]. So IAEs figure firstly as analyses of 
expressions of ALGOL 60 and secondly as description of the 
attalytieal process itself. This dual role of IAEs is in a sense 
fortuitous. However, it has incidental advantages. I t  pro- 
vides an example of the use of AEs as a descriptive tool. 
I t  also saves us the burden of introducing yet  another 
language in out' a t tempt  at language explication. 

The presentation that  follows somewhat resembles a 
syntax-oriented compiler in that, it is composed of two 
expressions, namely: first, a syntactic expression that  de- 
termines a parenthesization of each well-formed ALGOL 60 
text and a classification of the parenthesized segments; 
arid, second, a "semantic function" that  associates an IAE 
with each parenthesized text, and hence (on the assump- 
tion of unique parenthesization) with each text. 

We elaborate the notion of a parenthesized text as fol- 
lows. We characterize a certain class of constructed ob- 
jects (COs), called ALGOL 60 COs (ACOs), which can be 
considered as abstract ALaOL 60 programs arid parts of 
programs. Each ACO corresponds to an ALGOL 60 text 

* Ileeeived April, 1964; revised November, 1964. Parg I of this 
paper appeared in the Communications of the ACM 8, 2 (1965), 
89--101. The complete list of References appears with Part I. 

t Present address: Univac Division of Sperry Rand Corpora- 
tion, Systems Programming Research, New York, New York. 

158 Communications of the ACM 

H. w. H~.~I~H, /~sst. ~.oltor, t~{ossary & TermJn010gy 
E. LOHSE,  Asst ,  Editor, In fo rmat ion  Interchange 
R. V. SiVIITH~ Asst. Editor, Programming Languages 

(or more accurately, to a class of ~exts that  ~re, in a fairly 
triviM sense, "mutual ly in~ercha~geable") that can be con- 
sidered as the written representation of the abstract AC0. 
Our syntactic expression is an expression denoting a fu~Le- 
tion sprogram that passes from an ACO to the class of 
texts representing it. Our semantic function, nprogra~., 
passes from an ACO to an IAE that models it. In choosing 
an IAE that  models a particular AL(;OL 60 program there 
are mm/y decisions to be made, some triviM and some more 
interesting in that they are analogous to important de- 
cisions made when implemeniing Ag(;or, 60. However, for 
our present purpose the mMn virtues are conciseness and 
transparency of the semantic function, even at the cost of 
these qualities in the resulting IAEs. 

ABSTRACT ALGOI~ 

The struetm'e definition that  follows characterizes a 
class of constructed objects, called ALGOL 60 COs (AC0s), 
that n'firror A~,GOL 60 programs. The relation between 
AI~GOL 60 texts arid ACOs is many-one; it would be one- 
one but for spaces, comments, parameter  delimiters and 
the optional omission in ALGOL 60 of ' r ea l '  in certain 0e- 
currenees of ' real  a r r a y ' .  (It  is likely that  some other 
languages make more use of such trivial equivalences,/In 
framing the definition of ACOs, there is no attempt to 
filter out just nonsense as 

i f  a+b t h e n  ... 
o r  

rea l  x; i f  x t h e n  ... 

whereas the syntactic expressions of the ALC~OL 60 do ex- 
clude the first, if not the second. (Four equivalent identi- 
tiers, 'arithexp', 'Boolexp', 'designexp' and 'exp', are used 
below solely for' improved readability. Their merit depends 
on our undertaking not to interchange them misleadingly.) 

In general, ACOs are more tolerant thau Ar~ooI, 60 
syntax. In some eases, such as the ones given above, the 
license is short-lived because it leads to undefined results, 
but  others will actually be given a meaning by our semantic 
function, e.g. 

.., r e a l  p r o c e d u r e  a; a := b@.c; 
p r o c e d u r e  f; v a l u e  a;... 

and 

. . . L : i f p  t h e n  s; L;.. .  

The structure definition of ACOs uses certain auxilial? 

Volume 8 / N u m b e r  3 / ~larch,  1965 
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A correspondence between ALGOL 60 and Church's 
lambda-notation. Comm.  ACM (1965) 8: 89–101, 158–165.

‣ imperative applicative expressions (IAEs)

- AEs + program-points (J), assigners (lhs ⇐ rhs)

‣ correspondence

- ALGOL 60 abstract syntax (ACOs)

- synthetic syntax functions :  ACOs → Sets(Texts)

- semantic functions :  ACOs → IAEs

1964–65
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ALGOL 60

Expressions

‣ arithmetic, relational, logical, conditional

‣ function application, array and switch components

Statements

‣ assignment, conditional, for-loop, compound

‣ procedure call, jump

Declarations

‣ variable, function, procedure, array, switch

‣ block, recursion, name and value parameters

11



1964–66

P. J. Landin: A formal description of ALGOL 60. 
In Proc. IFIP 1964  TC2 Working Conference on 
Formal Language Description Languages, 1966.

‣ an introduction to the full description

‣ illustration of the correspondence

‣ discussion of foundations

12



1965

P. J. Landin: A generalization of jumps and labels.
Univac Technical Report,  August1965; 
Higher-Order & Symbolic Computation (1998) 11: 125–143.

‣ program-closures, J

- syntactic sugar for program-points

‣ an extended SECD-machine

13



1965–66

P. J. Landin: The next 700 programming languages.
Presented at an ACM Programming Languages and Pragmatics Conference, 
California, 1965; Comm.  ACM (1966) 9: 157–166.

‣ ISWIM (If you See What I Mean)

- family of unimplemented(?) languages

- extends IAEs with (let, where, rec, pp) definitions

14



Landin’s description of ALGOL 60

abstract 
syntax ACOs

lambda- 
notation

IAEs

nprogram

program 
text

program 
text

program 
text

program 
text

program 
text

program 
text

program 
text

program 
text

concrete
syntax

sprogram

Sets of
texts
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“presented informally as a rather long English sentence…”
F 

a rator which  is an  o, 
a nd  a rand which  is an  S, 

or e l s e  is an S, 
a n d  a 2op(o,S) is 

e i the r  2compound a n d  has  
a rator which  is an  o, 
a n d  a lstrand which  is a 2op(o,S) 
and a 2ndrand which  is an  S, 

or e l s e  is an  S, 
a n d  a t y p e p r i m a r y  is 

e i the r  a coast which  is 
e i ther  arithmetical, 
or Boolean, 
or string, 

or simple a n d  is a var iab le ,  
or  e l s e  is art exp,  

a n d  an a r i t hexp  is an  exp,  
a n d  a Boolexp  is a n  exp,  
a n d  a des ignexp  is a n  exp,  
a n d  a c lassexp  is 

e i t he r  simple a n d  is ' r e a l '  I ' i n t e g e r '  I ' B o o l e a n '  ] ' s t r i n g ' ]  
' l a b e l '  ] ' c o n l m a n d ' ,  

or  e l s e  has  a rator which  is ' a r r a y '  t ' p r o c e d u r e ' ,  
:rod a rand w hich  is a c lassexp,  

a n d  a va r i a b l e  is 
e i t he r  simple a n d  is an  identif ier ,  
or  an  element an(t has  

a rotor which  is an  identif ier ,  
a n d  a rand which  is a n onnu l l  a r i thexp- l i s t ,  

or  e l s e  is a f unc t i o ndes i g ,  
a n d  a f u n c t i o n d e s i g  has  

a rator w h i c h  is a n  ident i f ier ,  
and a ,und which  is a no nnu l l  exp- l i sL  

T H E  SYNTHETIC SYNTAX FUNCTION 

We present a function that associates a class of texts 
(i.e. character-strings) with each ACO. The definition of 
this function contains several auxiliary definitions each 
corresponding to one of the auxiliary ACO-elasses. This 
correspondence is informally indicated by using 'sprogram', 
'sstatement', 'sarithexp', etc. to name the auxiliary syn- 
thetic syntax functions that correspond respectively to 
programs, statements, arithexps, etc. 

The infixed symbol '~ '  indicates the operation on 
text classes that is indicated in the ALGOL 60 report by 
concatenation, iV[ore accurately, if B and C are two text 
classes, then 'BwC' denotes the class each of whose 
members have the form 

concatenate (b,s,c) 

where b is a B, s is a (possible null) string of spaces and 
c is a C. We shall formalize the optional occurrence of 
spaces anywhere except in quoted strings. The other 
operation on text classes much used in the ALGOL 60 
report is class union. It  is indicated here as there by an 
infixed vertical stroke; we use 'u' on the few occasions 
where class unions other titan text classes are denoted. 

We shall generally let a quoted string, e.g. 'begin ' ,  
designate, ambiguously, either the character-string itself, 
or the class whose sole member is that  string. If it is 
important we shall distinguish the latter by writing 

Q ' b e g i n '  

160 C o m m u n i c a t i o n s  o f  t h e  A C M  

r~. e [ h,  function Q (el. (?m:~'y's Q [21) l;ur~s m~ object into a 
class whose sole :m(~mber is t~hat object. Similarly, we shall 
let a quoted single char~cl:x:r, o.g. ' : : '  desi~n,%e either the 
character, or: the string whose so/(' item is that character, 
or the class whose solo member :is that  string. If it is 
important we shall dist.i~guish t:t~e l~st two by writing 

u~=~ or unitl ist  ~=' or vni ts t r ino '= ' 
Q ( u ' = ' )  or Q(uni t l i s t '= '  or Q('l~uitstring'=') 

respectively. 
Here are some definitions invok~d by the definition of 

the synthetic syntax function: 

empty = Q(nullstring) 
sp(s) = null (ts) ~ u(hs) 

e l s e  -~ Q(u(hs ) )~sp( t s )  

So, for example, sp( 'begln ' )  is a text class whose members 
include ' b e g i n ' ,  'b e g i n ' ,  'beg in ' ,  etc. Thus an identi. 
tier or number b is represented by the text class sp(b) 
whereas a string-constant b is represented by the text class 

quote (b ) = Q (eoncatenate( 'r ' ,b , '  ~ ' ) )  

Other definitions invoked below ~m~: 

tbraeket( C) = ' ( '~  C e  ' ) '  
tsquarebracket(C) = ' [ ' ~ C ~  ']' 
sc = ' ; ' ~  (comment ] empty) 
comment = sp ' e o m m e n  t ' ~anystringnotcontainingasemicolon,~ ';' 
twordbracket (C) = 

sp ' beg in  ' 
(comment I empty) 
Cw 
s p ' e n d ' ~  
anystringnoteonlainingamemberof ( s p ' e n d '  I s p ' e l s e '  [ ' ; ')  

trepeat(separator, C) = C I CG separatorG trepeat(separator, C) 
paradel = ',' l ' ) '~trepeat(empty,  l e t t e r )~ ' (  ~ 
srepeat(separator, seategory) (S) = 

null ( tS ) --~ scatego~S 
e l s e  -+ scategory (hS) ~. separator~ sr epeat (separator ,scategory) ( tS] 

So, e.g. if S is a non-null list of arithexps, and sarithexp 
is a (synthetic syntax) function that  converts an arithexp 
into a class of texts representing it, then 

srepeat ( ', ~, sarithexp )S 

is a class of texts representing S with the items separated 
by commas (and possibly also by spaces). 

On the other hand, if tarithexp is the class of all texts 
representing arithexps then 

trepeat (',', tarithexp ) 

denotes the class of texts representing all non-null lists of 
arithexps, as opposed to just, one particular list. 

There follows the definition of sprogra'm: TM 

sprogram(S) = slabeled(sclosedprogram) (S) 
w h e r e  r e c  

sclosedprogram (S) = 
twordbracket (bloekS --~ srepeat ( sc,sdec l ) (headS) ~ 

SeC: 
sopenprogram (body,S) 

e l s e  --~ sopenprogramS) 
w h e r e  sopenprogram = srepeat(sc, slabeled(sslatemenl) ) 

V o l u m e  I¢ / N u m b e r  3 / M a r c h ,  1965 

classes of COs,  e.g, :~lal(~me'~d, forli,vteIement and  ari lhexp,  
l>hat we sh~tll loose ly  call  an:ciliary A COs. I t  also uses cer-  
t:ai~, fami l ies  of  such  classes each  g e n e r a t e d  by  a CO-c lass -  
p r o d u c e r ;  ('.g. for  a l ly  (',lasses t ariel S 

2o~(z,,5') 
is a ebtss o[' C O s  c o m p r i s i n g  al l  t h e  £% a n d  also s o m e  com-  
pos i l e  objcc{s each  i n c o r p o r a t i n g  t 's  and  S 's .  A g a i n ,  

labeled(S) 
compr i se s  all S ' s  a n d  c e r t a i n  c o m p o s i t e  ob j e c t s  each  in- 
c o r p o r a t i n g  an id(mti f ier  a n d  a labeled(S).  

T h e  fol/owit~g s t r u c t u r e  d e f i n i t i o n  def ines  A C O s  in  t e r m s  
of l ists  arid n o n e o m p o s i t e  ob j ec t s .  T h e  n o n e o m p o s i t e  ob-  
j ec t s  a re  AL<a)L 60 iden t i f i e r s  (e.g. ' sat ' ,  7"), A~,aoL 60 con-  
s t an t s  (e.g. '3 .14 ' ,  ' t r u e ' ,  '~  abcd " )  Ai,<;OL 60 o p e r a t i o n  
s y m b o l s  (e.g. ' ~ ' ,  ' + ' ,  ' T  ' ) ,  a n d  c e r t a i n  Ai~aor, 60 s y m -  
bols  eo tmerned  w i t h  classes (e.g. ' r e a l ' ,  ' l a b e l ' ,  ' s t r i n g ' ,  
' p r o e e d u r e ' - - a l s o  one  non-ALGO*, symbo l ,  n a m e l y  
' c o m m a n d ' ) .  

i f  A is a class, then art A d i s t  is a list each  of w h o s e  i t ems  
is an A .  I f  k is a n  in t ege r ,  a k- l is t  is a l ist  of l e n g t h  k; a n d  
a to-A-list is an  A - l i s t  of l e n g t h  It. 

A s t r u c t u r e  de f in i t i on  i n t r o d u c e s  idert t i f iers  t h a t  desig-  
n a t e  funei~ions for  t e s t i n g  C O s  a n d  for  se lec t ing  com-  
p o n e n t s  f r o m  t h e m .  T h e  f o l l o w i n g  s t r u c t u r e  de f i n i t i o n  is 
p r e s e n t e d  i n f o r m a l l y  as a r a t h e r  l o n g  E n g l i s h  s en t ence .  
( T h e r e  a r e  c e r t a i n  p o i n t s  of  r i g o u r  t h a t  a re  b e g g e d  here ,  
n o t a b l y  w h e t h e r  a o n e - c o m p o n e n t  C O  needs  a s e l ec to r  o r  
nob. F o r  e x a m p l e ,  be low i t  wil l  be  o b s e r v e d  t h a t  "looping 
s t a t e m e n t s "  do  no t ,  w h e r e a s  " j u m p i n g  u n e o n d s t a t e -  
m e n t s "  do.  T h i s  is a n  issue w h o s e  r e so lu t i o n  m i g h t  e m e r g e  
f r o m  m o r e  e x p e r i e n c e  in us ing  t h e  d e s c r i p t i v e  t e c h n i q u e . )  

A program is a labeled elosedprogram, 
whe re  ree 

a elosedprogram is 
either a block and has 

a head which is a nonnull deel-list, 
and a body which is an openprogram, 

or else is art openprogram, 
whe re  an openprogram is a nonnull  labeled(statement)-l ist ,  

and  a s ta tement  is 
either cond and is 

either 2armed and has 
a condition which is a Boolexp, 
and a lslarm which is a labeled uncondstatement ,  
and a 2ndarm which is a labeled s tatement ,  

or 1armed and has 
a comtition which is a Boolexp, 
and art arm which is 

either looping and is a labeled forstatement,  
or e lse  i8 a labeled uncondstatement ,  

or looping and is a forstatement ,  
or e lse  is an uncondstatement ,  

and  a forstatement has 
a control which is a variable, 
and a forlist which is a nonnull forlistelement-list ,  
and a body which is a labeled s ta tement ,  
w h e r e  a forl istelement is 

either a progression and has 
an initial which is an arithexp, 

and art incr which is an arithexp, 
and a terminal which is an arithexp, 

or ~n iteration and has 
a rhs which is an arithexp, 
and a condition which is a Boolexp, 

or else is an arithexp, 
a n d  an uncondstatement is 

ei ther composite and is a elosedprogram, 
or jumping and has a body which is a designexp, 
or a dummy, 
or assigning and is an assignexp, 
w h e r e  ree  an assignexp has 

a /hs  which is a variable, 
attd a rhs which is 

either simple and is an exp, 
or else is an assignexp, 

or  e l s e  is a fuactiondesig, 
a n d  a labeled(S) is 

e i ther  tagged and has 
a label which is an identifier, 
and a body which is a labeled(S), 

or  else is an S, 
a n d  a decl is either nonrec and is a nonrecdecl, 

or rec and is a recdecl, 
w h e r e  a nonrecdecl has 

an ownness which is a truth-value, 
and a body wlhieh is 

either a typedecl and has 
a type which is a elassexp, 
and a nee which is a nonnull identifier-list, 

or an arraydecl and has 
a type which is a classexp, 
and a body which is a nonnull arraysegment-list, 
where an arraysegment has 

a nee which is a nonnull identifier-list, 
and a size which is a (2-arithexp-list)-list, 

a n d  a recdecl is 
either a switch&el and has 

a nee which is an identifier, 
and a niens which is a nonnull designexp-list, 

or a procdecl and has 
a type which is a elassexp, 
and a nee which is an identifier, 
and formals which are a (possibly null) identifier-list, 
and a valpart which is a (possibly null) identifier-list, 
and a specpart which is a (possibly null) spec-list, 

w h e r e  a spec has 
a specifier which is a classexp, 
and a body which is a nonnull identifier-list, 

and a body which is either code, 
or else is a labeled statement ,  

w h e r e  r e e  
an exp is either cond and has 

a condition which is a Boolexp, 
and a lslarm which is a simpexp, 
and a 2ndarm which is an exp, 

w h e r e  a simpexp is a 
2op('~ ', 

2op('D', 
2op( 'V' ,  

2op('A ', 
lop ( '-n ', 

2op( '<'  l '=<' l '= '  l '=>' l ' > ' I ' # ' ,  
2op( ' + ' l ' - ' ,  

l op ( '+ '  l ' -- ' ,  
2op( 'X '  [ ' / '  l '+ ', 

2op("t" ', typeprimary)))}))))))  
w h e r e  a lop(o,S) is 

either lcompound and has 
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“presented informally as a rather long English sentence…”
F 

a rator which  is an  o, 
a nd  a rand which  is an  S, 

or e l s e  is an S, 
a n d  a 2op(o,S) is 

e i the r  2compound a n d  has  
a rator which  is an  o, 
a n d  a lstrand which  is a 2op(o,S) 
and a 2ndrand which  is an  S, 

or e l s e  is an  S, 
a n d  a t y p e p r i m a r y  is 

e i the r  a coast which  is 
e i ther  arithmetical, 
or Boolean, 
or string, 

or simple a n d  is a var iab le ,  
or  e l s e  is art exp,  

a n d  an a r i t hexp  is an  exp,  
a n d  a Boolexp  is a n  exp,  
a n d  a des ignexp  is a n  exp,  
a n d  a c lassexp  is 

e i t he r  simple a n d  is ' r e a l '  I ' i n t e g e r '  I ' B o o l e a n '  ] ' s t r i n g ' ]  
' l a b e l '  ] ' c o n l m a n d ' ,  

or  e l s e  has  a rator which  is ' a r r a y '  t ' p r o c e d u r e ' ,  
:rod a rand w hich  is a c lassexp,  

a n d  a va r i a b l e  is 
e i t he r  simple a n d  is an  identif ier ,  
or  an  element an(t has  

a rotor which  is an  identif ier ,  
a n d  a rand which  is a n onnu l l  a r i thexp- l i s t ,  

or  e l s e  is a f unc t i o ndes i g ,  
a n d  a f u n c t i o n d e s i g  has  

a rator w h i c h  is a n  ident i f ier ,  
and a ,und which  is a no nnu l l  exp- l i sL  

T H E  SYNTHETIC SYNTAX FUNCTION 

We present a function that associates a class of texts 
(i.e. character-strings) with each ACO. The definition of 
this function contains several auxiliary definitions each 
corresponding to one of the auxiliary ACO-elasses. This 
correspondence is informally indicated by using 'sprogram', 
'sstatement', 'sarithexp', etc. to name the auxiliary syn- 
thetic syntax functions that correspond respectively to 
programs, statements, arithexps, etc. 

The infixed symbol '~ '  indicates the operation on 
text classes that is indicated in the ALGOL 60 report by 
concatenation, iV[ore accurately, if B and C are two text 
classes, then 'BwC' denotes the class each of whose 
members have the form 

concatenate (b,s,c) 

where b is a B, s is a (possible null) string of spaces and 
c is a C. We shall formalize the optional occurrence of 
spaces anywhere except in quoted strings. The other 
operation on text classes much used in the ALGOL 60 
report is class union. It  is indicated here as there by an 
infixed vertical stroke; we use 'u' on the few occasions 
where class unions other titan text classes are denoted. 

We shall generally let a quoted string, e.g. 'begin ' ,  
designate, ambiguously, either the character-string itself, 
or the class whose sole member is that  string. If it is 
important we shall distinguish the latter by writing 

Q ' b e g i n '  

160 C o m m u n i c a t i o n s  o f  t h e  A C M  

r~. e [ h,  function Q (el. (?m:~'y's Q [21) l;ur~s m~ object into a 
class whose sole :m(~mber is t~hat object. Similarly, we shall 
let a quoted single char~cl:x:r, o.g. ' : : '  desi~n,%e either the 
character, or: the string whose so/(' item is that character, 
or the class whose solo member :is that  string. If it is 
important we shall dist.i~guish t:t~e l~st two by writing 

u~=~ or unitl ist  ~=' or vni ts t r ino '= ' 
Q ( u ' = ' )  or Q(uni t l i s t '= '  or Q('l~uitstring'=') 

respectively. 
Here are some definitions invok~d by the definition of 

the synthetic syntax function: 

empty = Q(nullstring) 
sp(s) = null (ts) ~ u(hs) 

e l s e  -~ Q(u(hs ) )~sp( t s )  

So, for example, sp( 'begln ' )  is a text class whose members 
include ' b e g i n ' ,  'b e g i n ' ,  'beg in ' ,  etc. Thus an identi. 
tier or number b is represented by the text class sp(b) 
whereas a string-constant b is represented by the text class 

quote (b ) = Q (eoncatenate( 'r ' ,b , '  ~ ' ) )  

Other definitions invoked below ~m~: 

tbraeket( C) = ' ( '~  C e  ' ) '  
tsquarebracket(C) = ' [ ' ~ C ~  ']' 
sc = ' ; ' ~  (comment ] empty) 
comment = sp ' e o m m e n  t ' ~anystringnotcontainingasemicolon,~ ';' 
twordbracket (C) = 

sp ' beg in  ' 
(comment I empty) 
Cw 
s p ' e n d ' ~  
anystringnoteonlainingamemberof ( s p ' e n d '  I s p ' e l s e '  [ ' ; ')  

trepeat(separator, C) = C I CG separatorG trepeat(separator, C) 
paradel = ',' l ' ) '~trepeat(empty,  l e t t e r )~ ' (  ~ 
srepeat(separator, seategory) (S) = 

null ( tS ) --~ scatego~S 
e l s e  -+ scategory (hS) ~. separator~ sr epeat (separator ,scategory) ( tS] 

So, e.g. if S is a non-null list of arithexps, and sarithexp 
is a (synthetic syntax) function that  converts an arithexp 
into a class of texts representing it, then 

srepeat ( ', ~, sarithexp )S 

is a class of texts representing S with the items separated 
by commas (and possibly also by spaces). 

On the other hand, if tarithexp is the class of all texts 
representing arithexps then 

trepeat (',', tarithexp ) 

denotes the class of texts representing all non-null lists of 
arithexps, as opposed to just, one particular list. 

There follows the definition of sprogra'm: TM 

sprogram(S) = slabeled(sclosedprogram) (S) 
w h e r e  r e c  

sclosedprogram (S) = 
twordbracket (bloekS --~ srepeat ( sc,sdec l ) (headS) ~ 

SeC: 
sopenprogram (body,S) 

e l s e  --~ sopenprogramS) 
w h e r e  sopenprogram = srepeat(sc, slabeled(sslatemenl) ) 
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classes of COs,  e.g, :~lal(~me'~d, forli,vteIement and  ari lhexp,  
l>hat we sh~tll loose ly  call  an:ciliary A COs. I t  also uses cer-  
t:ai~, fami l ies  of  such  classes each  g e n e r a t e d  by  a CO-c lass -  
p r o d u c e r ;  ('.g. for  a l ly  (',lasses t ariel S 

2o~(z,,5') 
is a ebtss o[' C O s  c o m p r i s i n g  al l  t h e  £% a n d  also s o m e  com-  
pos i l e  objcc{s each  i n c o r p o r a t i n g  t 's  and  S 's .  A g a i n ,  

labeled(S) 
compr i se s  all S ' s  a n d  c e r t a i n  c o m p o s i t e  ob j e c t s  each  in- 
c o r p o r a t i n g  an id(mti f ier  a n d  a labeled(S).  

T h e  fol/owit~g s t r u c t u r e  d e f i n i t i o n  def ines  A C O s  in  t e r m s  
of l ists  arid n o n e o m p o s i t e  ob j ec t s .  T h e  n o n e o m p o s i t e  ob-  
j ec t s  a re  AL<a)L 60 iden t i f i e r s  (e.g. ' sat ' ,  7"), A~,aoL 60 con-  
s t an t s  (e.g. '3 .14 ' ,  ' t r u e ' ,  '~  abcd " )  Ai,<;OL 60 o p e r a t i o n  
s y m b o l s  (e.g. ' ~ ' ,  ' + ' ,  ' T  ' ) ,  a n d  c e r t a i n  Ai~aor, 60 s y m -  
bols  eo tmerned  w i t h  classes (e.g. ' r e a l ' ,  ' l a b e l ' ,  ' s t r i n g ' ,  
' p r o e e d u r e ' - - a l s o  one  non-ALGO*, symbo l ,  n a m e l y  
' c o m m a n d ' ) .  

i f  A is a class, then art A d i s t  is a list each  of w h o s e  i t ems  
is an A .  I f  k is a n  in t ege r ,  a k- l is t  is a l ist  of l e n g t h  k; a n d  
a to-A-list is an  A - l i s t  of l e n g t h  It. 

A s t r u c t u r e  de f in i t i on  i n t r o d u c e s  idert t i f iers  t h a t  desig-  
n a t e  funei~ions for  t e s t i n g  C O s  a n d  for  se lec t ing  com-  
p o n e n t s  f r o m  t h e m .  T h e  f o l l o w i n g  s t r u c t u r e  de f i n i t i o n  is 
p r e s e n t e d  i n f o r m a l l y  as a r a t h e r  l o n g  E n g l i s h  s en t ence .  
( T h e r e  a r e  c e r t a i n  p o i n t s  of  r i g o u r  t h a t  a re  b e g g e d  here ,  
n o t a b l y  w h e t h e r  a o n e - c o m p o n e n t  C O  needs  a s e l ec to r  o r  
nob. F o r  e x a m p l e ,  be low i t  wil l  be  o b s e r v e d  t h a t  "looping 
s t a t e m e n t s "  do  no t ,  w h e r e a s  " j u m p i n g  u n e o n d s t a t e -  
m e n t s "  do.  T h i s  is a n  issue w h o s e  r e so lu t i o n  m i g h t  e m e r g e  
f r o m  m o r e  e x p e r i e n c e  in us ing  t h e  d e s c r i p t i v e  t e c h n i q u e . )  

A program is a labeled elosedprogram, 
whe re  ree 

a elosedprogram is 
either a block and has 

a head which is a nonnull deel-list, 
and a body which is an openprogram, 

or else is art openprogram, 
whe re  an openprogram is a nonnull  labeled(statement)-l ist ,  

and  a s ta tement  is 
either cond and is 

either 2armed and has 
a condition which is a Boolexp, 
and a lslarm which is a labeled uncondstatement ,  
and a 2ndarm which is a labeled s tatement ,  

or 1armed and has 
a comtition which is a Boolexp, 
and art arm which is 

either looping and is a labeled forstatement,  
or e lse  i8 a labeled uncondstatement ,  

or looping and is a forstatement ,  
or e lse  is an uncondstatement ,  

and  a forstatement has 
a control which is a variable, 
and a forlist which is a nonnull forlistelement-list ,  
and a body which is a labeled s ta tement ,  
w h e r e  a forl istelement is 

either a progression and has 
an initial which is an arithexp, 

and art incr which is an arithexp, 
and a terminal which is an arithexp, 

or ~n iteration and has 
a rhs which is an arithexp, 
and a condition which is a Boolexp, 

or else is an arithexp, 
a n d  an uncondstatement is 

ei ther composite and is a elosedprogram, 
or jumping and has a body which is a designexp, 
or a dummy, 
or assigning and is an assignexp, 
w h e r e  ree  an assignexp has 

a /hs  which is a variable, 
attd a rhs which is 

either simple and is an exp, 
or else is an assignexp, 

or  e l s e  is a fuactiondesig, 
a n d  a labeled(S) is 

e i ther  tagged and has 
a label which is an identifier, 
and a body which is a labeled(S), 

or  else is an S, 
a n d  a decl is either nonrec and is a nonrecdecl, 

or rec and is a recdecl, 
w h e r e  a nonrecdecl has 

an ownness which is a truth-value, 
and a body wlhieh is 

either a typedecl and has 
a type which is a elassexp, 
and a nee which is a nonnull identifier-list, 

or an arraydecl and has 
a type which is a classexp, 
and a body which is a nonnull arraysegment-list, 
where an arraysegment has 

a nee which is a nonnull identifier-list, 
and a size which is a (2-arithexp-list)-list, 

a n d  a recdecl is 
either a switch&el and has 

a nee which is an identifier, 
and a niens which is a nonnull designexp-list, 

or a procdecl and has 
a type which is a elassexp, 
and a nee which is an identifier, 
and formals which are a (possibly null) identifier-list, 
and a valpart which is a (possibly null) identifier-list, 
and a specpart which is a (possibly null) spec-list, 

w h e r e  a spec has 
a specifier which is a classexp, 
and a body which is a nonnull identifier-list, 

and a body which is either code, 
or else is a labeled statement ,  

w h e r e  r e e  
an exp is either cond and has 

a condition which is a Boolexp, 
and a lslarm which is a simpexp, 
and a 2ndarm which is an exp, 

w h e r e  a simpexp is a 
2op('~ ', 

2op('D', 
2op( 'V' ,  

2op('A ', 
lop ( '-n ', 

2op( '<'  l '=<' l '= '  l '=>' l ' > ' I ' # ' ,  
2op( ' + ' l ' - ' ,  

l op ( '+ '  l ' -- ' ,  
2op( 'X '  [ ' / '  l '+ ', 

2op("t" ', typeprimary)))}))))))  
w h e r e  a lop(o,S) is 

either lcompound and has 
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classes of COs,  e.g, :~lal(~me'~d, forli,vteIement and  ari lhexp,  
l>hat we sh~tll loose ly  call  an:ciliary A COs. I t  also uses cer-  
t:ai~, fami l ies  of  such  classes each  g e n e r a t e d  by  a CO-c lass -  
p r o d u c e r ;  ('.g. for  a l ly  (',lasses t ariel S 

2o~(z,,5') 
is a ebtss o[' C O s  c o m p r i s i n g  al l  t h e  £% a n d  also s o m e  com-  
pos i l e  objcc{s each  i n c o r p o r a t i n g  t 's  and  S 's .  A g a i n ,  

labeled(S) 
compr i se s  all S ' s  a n d  c e r t a i n  c o m p o s i t e  ob j e c t s  each  in- 
c o r p o r a t i n g  an id(mti f ier  a n d  a labeled(S).  

T h e  fol/owit~g s t r u c t u r e  d e f i n i t i o n  def ines  A C O s  in  t e r m s  
of l ists  arid n o n e o m p o s i t e  ob j ec t s .  T h e  n o n e o m p o s i t e  ob-  
j ec t s  a re  AL<a)L 60 iden t i f i e r s  (e.g. ' sat ' ,  7"), A~,aoL 60 con-  
s t an t s  (e.g. '3 .14 ' ,  ' t r u e ' ,  '~  abcd " )  Ai,<;OL 60 o p e r a t i o n  
s y m b o l s  (e.g. ' ~ ' ,  ' + ' ,  ' T  ' ) ,  a n d  c e r t a i n  Ai~aor, 60 s y m -  
bols  eo tmerned  w i t h  classes (e.g. ' r e a l ' ,  ' l a b e l ' ,  ' s t r i n g ' ,  
' p r o e e d u r e ' - - a l s o  one  non-ALGO*, symbo l ,  n a m e l y  
' c o m m a n d ' ) .  

i f  A is a class, then art A d i s t  is a list each  of w h o s e  i t ems  
is an A .  I f  k is a n  in t ege r ,  a k- l is t  is a l ist  of l e n g t h  k; a n d  
a to-A-list is an  A - l i s t  of l e n g t h  It. 

A s t r u c t u r e  de f in i t i on  i n t r o d u c e s  idert t i f iers  t h a t  desig-  
n a t e  funei~ions for  t e s t i n g  C O s  a n d  for  se lec t ing  com-  
p o n e n t s  f r o m  t h e m .  T h e  f o l l o w i n g  s t r u c t u r e  de f i n i t i o n  is 
p r e s e n t e d  i n f o r m a l l y  as a r a t h e r  l o n g  E n g l i s h  s en t ence .  
( T h e r e  a r e  c e r t a i n  p o i n t s  of  r i g o u r  t h a t  a re  b e g g e d  here ,  
n o t a b l y  w h e t h e r  a o n e - c o m p o n e n t  C O  needs  a s e l ec to r  o r  
nob. F o r  e x a m p l e ,  be low i t  wil l  be  o b s e r v e d  t h a t  "looping 
s t a t e m e n t s "  do  no t ,  w h e r e a s  " j u m p i n g  u n e o n d s t a t e -  
m e n t s "  do.  T h i s  is a n  issue w h o s e  r e so lu t i o n  m i g h t  e m e r g e  
f r o m  m o r e  e x p e r i e n c e  in us ing  t h e  d e s c r i p t i v e  t e c h n i q u e . )  

A program is a labeled elosedprogram, 
whe re  ree 

a elosedprogram is 
either a block and has 

a head which is a nonnull deel-list, 
and a body which is an openprogram, 

or else is art openprogram, 
whe re  an openprogram is a nonnull  labeled(statement)-l ist ,  

and  a s ta tement  is 
either cond and is 

either 2armed and has 
a condition which is a Boolexp, 
and a lslarm which is a labeled uncondstatement ,  
and a 2ndarm which is a labeled s tatement ,  

or 1armed and has 
a comtition which is a Boolexp, 
and art arm which is 

either looping and is a labeled forstatement,  
or e lse  i8 a labeled uncondstatement ,  

or looping and is a forstatement ,  
or e lse  is an uncondstatement ,  

and  a forstatement has 
a control which is a variable, 
and a forlist which is a nonnull forlistelement-list ,  
and a body which is a labeled s ta tement ,  
w h e r e  a forl istelement is 

either a progression and has 
an initial which is an arithexp, 

and art incr which is an arithexp, 
and a terminal which is an arithexp, 

or ~n iteration and has 
a rhs which is an arithexp, 
and a condition which is a Boolexp, 

or else is an arithexp, 
a n d  an uncondstatement is 

ei ther composite and is a elosedprogram, 
or jumping and has a body which is a designexp, 
or a dummy, 
or assigning and is an assignexp, 
w h e r e  ree  an assignexp has 

a /hs  which is a variable, 
attd a rhs which is 

either simple and is an exp, 
or else is an assignexp, 

or  e l s e  is a fuactiondesig, 
a n d  a labeled(S) is 

e i ther  tagged and has 
a label which is an identifier, 
and a body which is a labeled(S), 

or  else is an S, 
a n d  a decl is either nonrec and is a nonrecdecl, 

or rec and is a recdecl, 
w h e r e  a nonrecdecl has 

an ownness which is a truth-value, 
and a body wlhieh is 

either a typedecl and has 
a type which is a elassexp, 
and a nee which is a nonnull identifier-list, 

or an arraydecl and has 
a type which is a classexp, 
and a body which is a nonnull arraysegment-list, 
where an arraysegment has 

a nee which is a nonnull identifier-list, 
and a size which is a (2-arithexp-list)-list, 

a n d  a recdecl is 
either a switch&el and has 

a nee which is an identifier, 
and a niens which is a nonnull designexp-list, 

or a procdecl and has 
a type which is a elassexp, 
and a nee which is an identifier, 
and formals which are a (possibly null) identifier-list, 
and a valpart which is a (possibly null) identifier-list, 
and a specpart which is a (possibly null) spec-list, 

w h e r e  a spec has 
a specifier which is a classexp, 
and a body which is a nonnull identifier-list, 

and a body which is either code, 
or else is a labeled statement ,  

w h e r e  r e e  
an exp is either cond and has 

a condition which is a Boolexp, 
and a lslarm which is a simpexp, 
and a 2ndarm which is an exp, 

w h e r e  a simpexp is a 
2op('~ ', 

2op('D', 
2op( 'V' ,  

2op('A ', 
lop ( '-n ', 

2op( '<'  l '=<' l '= '  l '=>' l ' > ' I ' # ' ,  
2op( ' + ' l ' - ' ,  

l op ( '+ '  l ' -- ' ,  
2op( 'X '  [ ' / '  l '+ ', 

2op("t" ', typeprimary)))}))))))  
w h e r e  a lop(o,S) is 

either lcompound and has 
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Landin’s description of ALGOL 60

abstract 
syntax ACOs

lambda- 
notation

IAEs

nprogram
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nprogram : ACOs ➞ IAEs

 co~Ytbin(~ ('f', conslisting (eombine('g', ' x ' ) ,  'y ' ) )  ! 
+ , . , 

i i,Ve stile{; wJlh two hst-proeesstng functmns, that are 
needed later': 

i t ee  map f L = null L --) ( ) 
el s e  -~  f(hL) : mapf (tL) 

iii e.g. map squ, are (1, 3, 7, 2, 3) = (1, 9, 49, 4, 9) 

:l:'i  un ip r, = (map :ts, l,, map 2ha L) 

ree  select(p)(L) = null L --~ 0 
p(hL) -~ hL:seleet(p) (tL) 
e lse  ~ select(p) (t~) 

NeW come functions for processing IAEs and defini- 
tions, These are built up from the eonsmmtors for IAEs, 

a l s o  use t>he selectors and constructor for definitions, 
namely nee, niens attd consdef. 
combiune2(F,X, Y) = eombine(combine(F,X),Y) 
e.g. combine~("D . . . .  sin","k~-/2") = "{Dsiun}[k~-/2]" 
combined ( F ,X  , Y ,Z ) = combine (combine2 ( F ,X , Y ) ,Z) 

i eombinelist (F,X) = combine (F,conslisting (X)) 
.... e.g. combmel*st( f ,( a+b , c+d )) = f (a+b,c+d)"  

cons~redex (J ,X,Z)  = combine (consMxp (J ,X),Z) 
e.g. counsf~rede* (' u " , "u  (a+u)" ,"b+c")  = "{Xu.u(a+u) }[b+c]" 

i: i e "u(a+u)  w h e r e  u = b+c" 

e,g. consYredex("L","a:(b:L)") = "YXL.a:(b:L)" 
i.e. ( r o u gh ly )  "L w h e r e  r e e  L = a:(b:L)" 

delay (X) = conshexp (conslisting ( ) , X )  
e.g. delay("f(a) + f(b)")  = " ~ ( ) . f ( a )  + f(b)"  
do (X) = combinelist (X, ( ) )  
e.g. do("x',) = "x( )" 
conscondexp ( P,X)  = do (combiunelist (combine ('if', P), map delay X)  ) 
e.g. counscondexp("a=O","a","l/a") = 

"ff(a=O)fX( ).a, x ( ) . l /a )  ( ) "  

delayed(F) = combiune( 'B', F) 
e.g. delayed("float") = "Bfloat" 

i.e. (roughly) " f  w h e r e  f(x) = float.x" 
serial(X) = delay(serial ' (X,conslisting( ) ) ) 

w h e r e  serial' (X,Z) = nul lX ~ Z 
e l s e  --~ serial ~ (tX,combiune (hX,Z) ) 

e.g. serial("R", "S",  "T" )  = "~(  ) .T(S(R(  )))" 
i.e. " 7 ' . S . R "  

Iel(D) = l e t  J = map nee D 
a n d  Z = map niens D 
consdef (conslistingJ, counslistingZ) 

parallel ( " l e t  u = a + b " ,  
" l e t  v = c+d", 
" l e t  W = e+f")  = 
" l e t  (u, v, w) = (a+b, c+d, e T f ) "  

ondexp'(P, F) = consXexp('x', conseondexp(do P, map do F)) 
w h e r e  do(f) = combine(f, ~x') 

eounscondexp' ( "P  tJ q", " f" ,  "g.h") = 
"~x.(P U q) (x) --~ f(x) 

e l s e  ~ (g.h) (x)" 
(X) = combine ( ' J ' ,  X)  
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eonsletexp(D, X)  = counsf~redex(nee D, X ,  niens D) 
e.g.  counsletexp ( " l e t  x = 2p - q", "x(x + 1 ) ' )  = 

" l e t  x = 2p -- q 
x(~ + 1)" 

consreeexp(D,X) -- eons~redex(nee D, X ,  consYredex 
(nee D, niens D)) 

e .g .  consrecexp ( " l e t  x = x~+~ '', " x ( x + l ) " ) =  
" l e t  r e e  z = X2+~ 
x(x+l)" 

labels (N, X) = consf~redex(N, X,  map jump N) 
e .g .  labels  ("L, M " ,  "4,") = 

" l e t  L = JL 
a n d  M = J M  

arrangeaspseudoblock (D , X) = counreeexp(D , labels(nee D, X) ) 
arrangeasbloek(D, D', D", X)  = 

consl etexp ( D , eonsreeexp (parallel ( D',D") , labels (unee D", X) ) ) 
e .g .  ( rough ly )  
arrangeasblock("let a = ~kl", "le tp(x)=¢2",  

" letL=¢4 a n d  M=q%",  "$a")= 
" l e t  a = ~ 

l e t  r e e  p(z) = ¢2 
a n d  L = ¢4 
a n d  M = 4,5 

l e t  L = J L  
a n d  M = J M  

arrangeasblock p(D, D", X) = arrangeasbloek(D, parallel(), D",X) 

There now follows the definition of the semantic function 
nprogram, with its auxiliaries nforlistelement, nexp, etc. 

nprogramS = arrangeasblock'(unlabeled(ncIosedprogramNo'[')S) 
w h e r e  r e e  

nclosedprogramNLS = 
blocks -.~ l e t  Do, D, D', Xo = 

nhead (N, derive (cIassifiedvariablesS) N) (headS) 
l e t  Do", D" ,  X"  = nopenprogram(pnovN)L(bodyS) 
(parallel(Do, Do"), 
parallel(), 
arrangeasbloek(D,D', D ~, serial(Xo,X") ) ) 

e l s e  --~ unopenprogramNLS 
w h e r e  nopenprogramNLS = 

null ( tS) --~ nlabeled (nstalementNL ) (hS) 
e l s e  --~ l e t  j ,  N',  N" = takenewIabelN 

l e t  Do, D, X = unlabeled(nstatementN~j)(hS) 
l e t  D( ,  D', X '  = nopenprogram(punovN~')L(tS) 

.... (parallel(Do, Do'), 
parallel(D, eonsdef(j, delayX'), D'), 
x)  

a n d  nstatementNLS = 
condS --~ 

l e t D ~ , D , X  = 
2armedS ~ nlabeled(nuncondstatementNL) (lstarmS) 
larmedS --+ uunlabeIed (loopiung (armS) ~ nf  orstatementN 

e l s e  -+  nuneondstatementNL) 
(armS) 

l e t  Do',  D ' ,  X '  = 
2armed ~ nlabeled(nstatementNL) (2ndarmS) 
larmed ~ parallel(), parallel(), 'I' 

(parallel(Do, Do'), 
parallel(D, D'), 
conscondexp (n Boolexp (conditionS) , (X, X ') ) ) 

loopingS --~ serial (nforstatementNS, L) 
e l s e  --~ nuuncondstatemenlNLS 
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a n d  nforstatementNS = 
l e t  Do, D, X = nlabeled(nstatementN '[') (bodyS) 
(Dog 
parallel ( ) ,  
eombinelist ( ~f or ', 

(nlhsN (controlS), 
combinelist ( 'concatenate*', 

map (nf orlistelementN) (f orlistS) ) , 
armngeaspseudoblock(D, X) ) ) 

w h e r e  nforlistelementNS = 
progressions -~ 

eombinelist ('step*', 
map (narithexp N) 

(initialS, inerS, terminalS)) 
iterations 

combinelist ('while*', 
(narithexp N (rhsS) , 
nBoolexpN (conditionS))) 

e l se  --~ combine( 'unitlist*', narithexpNS) 
a n d  nuncondstatementNLS = 

composites -~ nclosedprogramNLS 
e l se  --~ (parallel(), 

parallel ( ) ,  
(jumpingS --~ ndesignexpN (bodyS) 
e l s e  

serial ( (dummyS -.~ 'I' 
assigningS ~ combine~ ('K', conslisting () ,  

nassignexpNS) 
e l se  ~ nfunctiondesigNS), 

(L))))  
w h e r e  t e e  nassignexpNS = 

combine2 ( 'assignandhold', 
(simpleS -.~ nexpNS 
else  --~ nassignexpN(rhsS)), 

nlhsN (lhsS) ) 
a n d  nlabeled(ncategory) (S) = 

taggedS -+ l e t  Do, D, X = nlabeled(ncategory) (bodyS) 
Do, parallel(consdef(labelS, delayX), D), labels 

e l se  ~ ncategoryS 
a n d  nhead(N, N') (S) = 

l e t  Do', D' = map parallel 
(unzip (map nrecdeclN' (select rec S) ) ) 

(parallel (Do': map nnonrecdeclN (select ownness S) ), 
parallel(map nnonrecdeclN (select( ~ .ownness) S) ). 
D', 

serial(map nownarraydeclresetN (select(arraydecluownness) S) ) ) 
w h e r e  nnonrecdcclNS = typedeclS ~-~ ntypedeclNS 

arraydecl S -+ narraydeclNS 
a n d  nrecdeclNS = switchdecl S ~ nswitchdeclNS 

procdecl S -÷  nprocdeclNS 
w h e r e  ntypedecINS = 
• parallel (map ntypedecl' (neeS)) 
w h e r e  ntypedecl~J = 

eonsdef ( (ownnessS ~ ownvariantNJ 
else  -~ d) ,  

combine ('separate', 
initialcon (typeS))) 

a n d  narraydeclNS = 
l e t  J, Z = unzip(map narraysegmentN (bodyS) ) 

w h e r e  narraysegmenlNS' = 
conslisting (ownnessS ~-~ map ownvariantN 
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e l se  --~ nee S'),  
eons~redex ( ' A ', 

constisting(map(K"separate A ") 
(nee S')) 

combine2 ( ' ex pandtoarray' , 
nbplistN (sizeSL 
'x ' ) )  

(neeS') 
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consdef ( eonsli sting ,f ~ 
eons~redcx ('x '~ 

conslisting Z~ 
initialcon (typeS))) 

a n d  nownarraydeclresetNS = 
serial(map nownarraysegmcntreset (bodyS) ) 
-where  nownarraysegmentr esct NS ' = 

serial (map nownarmyreset (neeS') ) 
w h e r e  nownarrayresel J = 

consassigner ( ownvariant N J  , 
combines ( 'parearray*, 

nbplist (sizeS'), 
conslisting (ownvariantNJ, 

initialcon (typeS)))) 
where  nbplistNS' = 

conslisting (map nboundpairNS') 
w h e r e  nboundpairNS' = 

conslisting(ownnessS -~ ( ' -  ~ ', '+ ~ ') 
e l se  --~ map narithexpNS') 

a n d  nswitchdeelNS = 
consdef ( ) , 
consdef (neeS, 

combine: ( 'arrangeasarray ~, 
conslisting (u ( conslisting ('1 ', 

length (niensS) ) ) ), 
conslisling (map ndesigncxpN (niensS) ) ) ) 

a n d  nproedeclNS = 
l e t  Do", D '~, X "  = 

code (bodyS) ~ ncode (derive ( classifiedvariab lesS) N) 
(bodyS) 

else  --~ nlabeled (nstatement (derive ( classi fiedvariab lesS) N ) 
( '1 ')  (bodyS) 

Do", 
consdef(neeS, 

conshexp ( conslisting (f ormalsS) , 
(types = ' c o m m a n d '  -~  X 
else  -~  cons~redex (resultvariant (neeS), 

X,  
initialcon (typeS))) 

where  X = consf~redex(d, 
arrangeasblocU (parallel (map nspecN 

(specpartS) ), 
D 't ' 
X"), 

Z) 
where  nvalue o r = consdef(J, combine('separate', do J)) 
a n d  nspecNS = parallel (map nspec'N (bodyS) ) 

w h e r e  nspeePNJ = 
consdef(J, 

combine ( (needsapplyingNJ --~ delayed 
e lse  --, I) (transfer) 

(specifierS) 
(J)) 

w h e r e  ree 
nexp = ncond(nsimp(nlypeprimary) ) 
w h e r e  ncond(ncategory)NS = 

condS -~ conseondexp (n Boolexp N (conditionS), 
(ncategoryN (lstarmS), 
neond(ncategory) N (2ndarmS)))  

a n d  nsimp (nprimary)NS = 
1compounds ~ combine (monadicvariant (raterS), 

nsimp (nprimary) (randS) ) 
2compounds ~ combinelist (raterS, 

map (nsimp (nprimary) ) 
(lstrandS, 2ndrandS))  I 

a n d  ntypeprimaryNS = constS -+ S 
simpleS .-~ nvariableNS 
e l se  --~ nexpS 
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and narilhexp = nexp 
and nBoolexp = nexp 
and ndesignexp = nexp 
and nvariableNS = simpleS -~, nidentifierNS 

vlementS -~ 
combine (nidentifierN (ralorS), 

consIisting (map narilhexpN (randS) ) ) 
clse --~ nfunctiondesigNS 

and nlhsNS = simpleS A putativeresultNS -o resultvariantS 
else --* nvariableS 

and nfunctiondesigNS = 
combinelist (nidentifier (tarotS), 

map (delay. nexp) (randS) ) 
where nidenti fier N J  = needsapplying N J  -~ doJ 

ownidentifier N J  --~ ownvariant N J  
else ~ J 

and inilialeon A = A = ' real '  -~ '0.0' 
A = ' in teger '  -~ '0' 
A = 'Boolean' --~ 'false' 

and transfer S = simple S --~ S = ' real '  --~ ']loat' 
S = ' in teger '  -~ 'unfloat' 
S = ' command '  --~ combine 

('in', 'null') 
S = ' label'  -~ '[' 
else --) combine('in', S) 

else  
conscondexp' ('atom', 

(t, combine('B', t))) 
where t = transform(rand S) 

where needapplying N = needsapplying NO 
putativeresultandneedsapplying N 

and putativeresult N = putativeresult NU 
putativeresultandneedsapplying N 

and monadicvariant J = (J = '+ ' )  --~ '+M' 
(J = ' -  ') --~ '-- M' 

In the definition of t rans fer  just  above, the complication 
in the nonsimple case arises from an irregularity in ALGOL 
60, namely its t r ea tmen t  of parameterless type  procedures 
occurring as procedure parameters .  The  predicate atom 
is the union of r e a l  i n t e g e r  and B o o l e a n .  

The following a l ternat ive  t r ea tment  of open programs 
with non-null tails avoids (a) inserting a jump after  a 
dummy, assignment or procedure s tatement ,  or in a 
compound or conditional containing no labels. (b) in- 
serting a label when the following s ta tement  is already 
labeled. 

let Do, D, X = nlabeled(nstatementN'I')(hS) 
let Do', D', X'  = nopenprogram(pnovN)L(tS) 
null D ~ parallel(Do, Do'), D', serial X ,  X ' )  
tagged(2ndS) ~ let Do, D, X = nlabeled(nstatementN (label(2ndS) ) ) 

(hS) 
parallel(Do, Do'), parallel(D, D') ,  X 

• I N i t  else --~ let  j, N , takenewlabel N 
let  Do, D, X = nlabeled(nstatementN'j) (hS) 
le t  Do, Do', X' = nopenprogTum(pnovN")L(tS) 
parallel(Do, Do'), parallel(D, consde$(j, delayX') ,  D') ,  X 

C o n c l u s i o n  

An abstract  language based on Churct! 's  X-notation and 
aa abstract  machine that  interprets it has been described. 
The language consists of expressions called " impera t ive  

expressions" (IAEs).  Like Church 's  systems, 
few structural  rules, but  they are enough to 

mirror ALGOL 60 in a correspondence that  preserves 
ALGOL 60'S structure. We have given an informal account 
of the correspondence, and a formal  account• 

The  correspondence suggests new ways of classifying 
some of ALGOL 60'S features, and also suggests certain 
generalizations and  alterations t ha t  may be of interest to 
language designers. In  so far as the correspondence leads 
to better  understanding of language structure the in- 
formal account of it suffices. 

The  formal account  somewhat  resembles a two-pass 
compiler from ALGOL 60 to IAEs.  The half-way house is a 
kind of analysis-tree tha t  we call "abst ract  ALGOL•" I t  
exemplifies a technique tha t  might  be of value to language 
designers, since it  isolates decisions about  what  informa- 
tion must  be conveyed from decisions about  its written 
appearance. 

The  "compiler"  was itself expressed in te rms of AEs 
(i.e. IAEs tha t  make  no use of imperative concepts). So 
this paper includes a nontrivial  application of a "purely 
functional" programming language to language processing. 

Acknowledgmen t s .  This paper  was writ ten while I 
worked for Christopher Strachey. I t  is based on some 
lectures tha t  George Coulouris invited me to contribute 
in Spring 1963 to a series on the "Logical Foundations of 
Programming"  a t  the Universi ty  of London Computer  
Unit. W. H. Burge, C. Strachey and M. Woodger read 
par ts  of an earlier version and pointed out m a n y  errors 
and obscurities• 
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nprogram : ACOs ➞ IAEs

 co~Ytbin(~ ('f', conslisting (eombine('g', ' x ' ) ,  'y ' ) )  ! 
+ , . , 

i i,Ve stile{; wJlh two hst-proeesstng functmns, that are 
needed later': 

i t ee  map f L = null L --) ( ) 
el s e  -~  f(hL) : mapf (tL) 

iii e.g. map squ, are (1, 3, 7, 2, 3) = (1, 9, 49, 4, 9) 

:l:'i  un ip r, = (map :ts, l,, map 2ha L) 

ree  select(p)(L) = null L --~ 0 
p(hL) -~ hL:seleet(p) (tL) 
e lse  ~ select(p) (t~) 

NeW come functions for processing IAEs and defini- 
tions, These are built up from the eonsmmtors for IAEs, 

a l s o  use t>he selectors and constructor for definitions, 
namely nee, niens attd consdef. 
combiune2(F,X, Y) = eombine(combine(F,X),Y) 
e.g. combine~("D . . . .  sin","k~-/2") = "{Dsiun}[k~-/2]" 
combined ( F ,X  , Y ,Z ) = combine (combine2 ( F ,X , Y ) ,Z) 

i eombinelist (F,X) = combine (F,conslisting (X)) 
.... e.g. combmel*st( f ,( a+b , c+d )) = f (a+b,c+d)"  

cons~redex (J ,X,Z)  = combine (consMxp (J ,X),Z) 
e.g. counsf~rede* (' u " , "u  (a+u)" ,"b+c")  = "{Xu.u(a+u) }[b+c]" 

i: i e "u(a+u)  w h e r e  u = b+c" 

e,g. consYredex("L","a:(b:L)") = "YXL.a:(b:L)" 
i.e. ( r o u gh ly )  "L w h e r e  r e e  L = a:(b:L)" 

delay (X) = conshexp (conslisting ( ) , X )  
e.g. delay("f(a) + f(b)")  = " ~ ( ) . f ( a )  + f(b)"  
do (X) = combinelist (X, ( ) )  
e.g. do("x',) = "x( )" 
conscondexp ( P,X)  = do (combiunelist (combine ('if', P), map delay X)  ) 
e.g. counscondexp("a=O","a","l/a") = 

"ff(a=O)fX( ).a, x ( ) . l /a )  ( ) "  

delayed(F) = combiune( 'B', F) 
e.g. delayed("float") = "Bfloat" 

i.e. (roughly) " f  w h e r e  f(x) = float.x" 
serial(X) = delay(serial ' (X,conslisting( ) ) ) 

w h e r e  serial' (X,Z) = nul lX ~ Z 
e l s e  --~ serial ~ (tX,combiune (hX,Z) ) 

e.g. serial("R", "S",  "T" )  = "~(  ) .T(S(R(  )))" 
i.e. " 7 ' . S . R "  

Iel(D) = l e t  J = map nee D 
a n d  Z = map niens D 
consdef (conslistingJ, counslistingZ) 

parallel ( " l e t  u = a + b " ,  
" l e t  v = c+d", 
" l e t  W = e+f")  = 
" l e t  (u, v, w) = (a+b, c+d, e T f ) "  

ondexp'(P, F) = consXexp('x', conseondexp(do P, map do F)) 
w h e r e  do(f) = combine(f, ~x') 

eounscondexp' ( "P  tJ q", " f" ,  "g.h") = 
"~x.(P U q) (x) --~ f(x) 

e l s e  ~ (g.h) (x)" 
(X) = combine ( ' J ' ,  X)  
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eonsletexp(D, X)  = counsf~redex(nee D, X ,  niens D) 
e.g.  counsletexp ( " l e t  x = 2p - q", "x(x + 1 ) ' )  = 

" l e t  x = 2p -- q 
x(~ + 1)" 

consreeexp(D,X) -- eons~redex(nee D, X ,  consYredex 
(nee D, niens D)) 

e .g .  consrecexp ( " l e t  x = x~+~ '', " x ( x + l ) " ) =  
" l e t  r e e  z = X2+~ 
x(x+l)" 

labels (N, X) = consf~redex(N, X,  map jump N) 
e .g .  labels  ("L, M " ,  "4,") = 

" l e t  L = JL 
a n d  M = J M  

arrangeaspseudoblock (D , X) = counreeexp(D , labels(nee D, X) ) 
arrangeasbloek(D, D', D", X)  = 

consl etexp ( D , eonsreeexp (parallel ( D',D") , labels (unee D", X) ) ) 
e .g .  ( rough ly )  
arrangeasblock("let a = ~kl", "le tp(x)=¢2",  

" letL=¢4 a n d  M=q%",  "$a")= 
" l e t  a = ~ 

l e t  r e e  p(z) = ¢2 
a n d  L = ¢4 
a n d  M = 4,5 

l e t  L = J L  
a n d  M = J M  

arrangeasblock p(D, D", X) = arrangeasbloek(D, parallel(), D",X) 

There now follows the definition of the semantic function 
nprogram, with its auxiliaries nforlistelement, nexp, etc. 

nprogramS = arrangeasblock'(unlabeled(ncIosedprogramNo'[')S) 
w h e r e  r e e  

nclosedprogramNLS = 
blocks -.~ l e t  Do, D, D', Xo = 

nhead (N, derive (cIassifiedvariablesS) N) (headS) 
l e t  Do", D" ,  X"  = nopenprogram(pnovN)L(bodyS) 
(parallel(Do, Do"), 
parallel(), 
arrangeasbloek(D,D', D ~, serial(Xo,X") ) ) 

e l s e  --~ unopenprogramNLS 
w h e r e  nopenprogramNLS = 

null ( tS) --~ nlabeled (nstalementNL ) (hS) 
e l s e  --~ l e t  j ,  N',  N" = takenewIabelN 

l e t  Do, D, X = unlabeled(nstatementN~j)(hS) 
l e t  D( ,  D', X '  = nopenprogram(punovN~')L(tS) 

.... (parallel(Do, Do'), 
parallel(D, eonsdef(j, delayX'), D'), 
x)  

a n d  nstatementNLS = 
condS --~ 

l e t D ~ , D , X  = 
2armedS ~ nlabeled(nuncondstatementNL) (lstarmS) 
larmedS --+ uunlabeIed (loopiung (armS) ~ nf  orstatementN 

e l s e  -+  nuneondstatementNL) 
(armS) 

l e t  Do',  D ' ,  X '  = 
2armed ~ nlabeled(nstatementNL) (2ndarmS) 
larmed ~ parallel(), parallel(), 'I' 

(parallel(Do, Do'), 
parallel(D, D'), 
conscondexp (n Boolexp (conditionS) , (X, X ') ) ) 

loopingS --~ serial (nforstatementNS, L) 
e l s e  --~ nuuncondstatemenlNLS 
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a n d  nforstatementNS = 
l e t  Do, D, X = nlabeled(nstatementN '[') (bodyS) 
(Dog 
parallel ( ) ,  
eombinelist ( ~f or ', 

(nlhsN (controlS), 
combinelist ( 'concatenate*', 

map (nf orlistelementN) (f orlistS) ) , 
armngeaspseudoblock(D, X) ) ) 

w h e r e  nforlistelementNS = 
progressions -~ 

eombinelist ('step*', 
map (narithexp N) 

(initialS, inerS, terminalS)) 
iterations 

combinelist ('while*', 
(narithexp N (rhsS) , 
nBoolexpN (conditionS))) 

e l se  --~ combine( 'unitlist*', narithexpNS) 
a n d  nuncondstatementNLS = 

composites -~ nclosedprogramNLS 
e l se  --~ (parallel(), 

parallel ( ) ,  
(jumpingS --~ ndesignexpN (bodyS) 
e l s e  

serial ( (dummyS -.~ 'I' 
assigningS ~ combine~ ('K', conslisting () ,  

nassignexpNS) 
e l se  ~ nfunctiondesigNS), 

(L))))  
w h e r e  t e e  nassignexpNS = 

combine2 ( 'assignandhold', 
(simpleS -.~ nexpNS 
else  --~ nassignexpN(rhsS)), 

nlhsN (lhsS) ) 
a n d  nlabeled(ncategory) (S) = 

taggedS -+ l e t  Do, D, X = nlabeled(ncategory) (bodyS) 
Do, parallel(consdef(labelS, delayX), D), labels 

e l se  ~ ncategoryS 
a n d  nhead(N, N') (S) = 

l e t  Do', D' = map parallel 
(unzip (map nrecdeclN' (select rec S) ) ) 

(parallel (Do': map nnonrecdeclN (select ownness S) ), 
parallel(map nnonrecdeclN (select( ~ .ownness) S) ). 
D', 

serial(map nownarraydeclresetN (select(arraydecluownness) S) ) ) 
w h e r e  nnonrecdcclNS = typedeclS ~-~ ntypedeclNS 

arraydecl S -+ narraydeclNS 
a n d  nrecdeclNS = switchdecl S ~ nswitchdeclNS 

procdecl S -÷  nprocdeclNS 
w h e r e  ntypedecINS = 
• parallel (map ntypedecl' (neeS)) 
w h e r e  ntypedecl~J = 

eonsdef ( (ownnessS ~ ownvariantNJ 
else  -~ d) ,  

combine ('separate', 
initialcon (typeS))) 

a n d  narraydeclNS = 
l e t  J, Z = unzip(map narraysegmentN (bodyS) ) 

w h e r e  narraysegmenlNS' = 
conslisting (ownnessS ~-~ map ownvariantN 
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e l se  --~ nee S'),  
eons~redex ( ' A ', 

constisting(map(K"separate A ") 
(nee S')) 

combine2 ( ' ex pandtoarray' , 
nbplistN (sizeSL 
'x ' ) )  

(neeS') 
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consdef ( eonsli sting ,f ~ 
eons~redcx ('x '~ 

conslisting Z~ 
initialcon (typeS))) 

a n d  nownarraydeclresetNS = 
serial(map nownarraysegmcntreset (bodyS) ) 
-where  nownarraysegmentr esct NS ' = 

serial (map nownarmyreset (neeS') ) 
w h e r e  nownarrayresel J = 

consassigner ( ownvariant N J  , 
combines ( 'parearray*, 

nbplist (sizeS'), 
conslisting (ownvariantNJ, 

initialcon (typeS)))) 
where  nbplistNS' = 

conslisting (map nboundpairNS') 
w h e r e  nboundpairNS' = 

conslisting(ownnessS -~ ( ' -  ~ ', '+ ~ ') 
e l se  --~ map narithexpNS') 

a n d  nswitchdeelNS = 
consdef ( ) , 
consdef (neeS, 

combine: ( 'arrangeasarray ~, 
conslisting (u ( conslisting ('1 ', 

length (niensS) ) ) ), 
conslisling (map ndesigncxpN (niensS) ) ) ) 

a n d  nproedeclNS = 
l e t  Do", D '~, X "  = 

code (bodyS) ~ ncode (derive ( classifiedvariab lesS) N) 
(bodyS) 

else  --~ nlabeled (nstatement (derive ( classi fiedvariab lesS) N ) 
( '1 ')  (bodyS) 

Do", 
consdef(neeS, 

conshexp ( conslisting (f ormalsS) , 
(types = ' c o m m a n d '  -~  X 
else  -~  cons~redex (resultvariant (neeS), 

X,  
initialcon (typeS))) 

where  X = consf~redex(d, 
arrangeasblocU (parallel (map nspecN 

(specpartS) ), 
D 't ' 
X"), 

Z) 
where  nvalue o r = consdef(J, combine('separate', do J)) 
a n d  nspecNS = parallel (map nspec'N (bodyS) ) 

w h e r e  nspeePNJ = 
consdef(J, 

combine ( (needsapplyingNJ --~ delayed 
e lse  --, I) (transfer) 

(specifierS) 
(J)) 

w h e r e  ree 
nexp = ncond(nsimp(nlypeprimary) ) 
w h e r e  ncond(ncategory)NS = 

condS -~ conseondexp (n Boolexp N (conditionS), 
(ncategoryN (lstarmS), 
neond(ncategory) N (2ndarmS)))  

a n d  nsimp (nprimary)NS = 
1compounds ~ combine (monadicvariant (raterS), 

nsimp (nprimary) (randS) ) 
2compounds ~ combinelist (raterS, 

map (nsimp (nprimary) ) 
(lstrandS, 2ndrandS))  I 

a n d  ntypeprimaryNS = constS -+ S 
simpleS .-~ nvariableNS 
e l se  --~ nexpS 
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and narilhexp = nexp 
and nBoolexp = nexp 
and ndesignexp = nexp 
and nvariableNS = simpleS -~, nidentifierNS 

vlementS -~ 
combine (nidentifierN (ralorS), 

consIisting (map narilhexpN (randS) ) ) 
clse --~ nfunctiondesigNS 

and nlhsNS = simpleS A putativeresultNS -o resultvariantS 
else --* nvariableS 

and nfunctiondesigNS = 
combinelist (nidentifier (tarotS), 

map (delay. nexp) (randS) ) 
where nidenti fier N J  = needsapplying N J  -~ doJ 

ownidentifier N J  --~ ownvariant N J  
else ~ J 

and inilialeon A = A = ' real '  -~ '0.0' 
A = ' in teger '  -~ '0' 
A = 'Boolean' --~ 'false' 

and transfer S = simple S --~ S = ' real '  --~ ']loat' 
S = ' in teger '  -~ 'unfloat' 
S = ' command '  --~ combine 

('in', 'null') 
S = ' label'  -~ '[' 
else --) combine('in', S) 

else  
conscondexp' ('atom', 

(t, combine('B', t))) 
where t = transform(rand S) 

where needapplying N = needsapplying NO 
putativeresultandneedsapplying N 

and putativeresult N = putativeresult NU 
putativeresultandneedsapplying N 

and monadicvariant J = (J = '+ ' )  --~ '+M' 
(J = ' -  ') --~ '-- M' 

In the definition of t rans fer  just  above, the complication 
in the nonsimple case arises from an irregularity in ALGOL 
60, namely its t r ea tmen t  of parameterless type  procedures 
occurring as procedure parameters .  The  predicate atom 
is the union of r e a l  i n t e g e r  and B o o l e a n .  

The following a l ternat ive  t r ea tment  of open programs 
with non-null tails avoids (a) inserting a jump after  a 
dummy, assignment or procedure s tatement ,  or in a 
compound or conditional containing no labels. (b) in- 
serting a label when the following s ta tement  is already 
labeled. 

let Do, D, X = nlabeled(nstatementN'I')(hS) 
let Do', D', X'  = nopenprogram(pnovN)L(tS) 
null D ~ parallel(Do, Do'), D', serial X ,  X ' )  
tagged(2ndS) ~ let Do, D, X = nlabeled(nstatementN (label(2ndS) ) ) 

(hS) 
parallel(Do, Do'), parallel(D, D') ,  X 

• I N i t  else --~ let  j, N , takenewlabel N 
let  Do, D, X = nlabeled(nstatementN'j) (hS) 
le t  Do, Do', X' = nopenprogTum(pnovN")L(tS) 
parallel(Do, Do'), parallel(D, consde$(j, delayX') ,  D') ,  X 

C o n c l u s i o n  

An abstract  language based on Churct! 's  X-notation and 
aa abstract  machine that  interprets it has been described. 
The language consists of expressions called " impera t ive  

expressions" (IAEs).  Like Church 's  systems, 
few structural  rules, but  they are enough to 

mirror ALGOL 60 in a correspondence that  preserves 
ALGOL 60'S structure. We have given an informal account 
of the correspondence, and a formal  account• 

The  correspondence suggests new ways of classifying 
some of ALGOL 60'S features, and also suggests certain 
generalizations and  alterations t ha t  may be of interest to 
language designers. In  so far as the correspondence leads 
to better  understanding of language structure the in- 
formal account of it suffices. 

The  formal account  somewhat  resembles a two-pass 
compiler from ALGOL 60 to IAEs.  The half-way house is a 
kind of analysis-tree tha t  we call "abst ract  ALGOL•" I t  
exemplifies a technique tha t  might  be of value to language 
designers, since it  isolates decisions about  what  informa- 
tion must  be conveyed from decisions about  its written 
appearance. 

The  "compiler"  was itself expressed in te rms of AEs 
(i.e. IAEs tha t  make  no use of imperative concepts). So 
this paper includes a nontrivial  application of a "purely 
functional" programming language to language processing. 
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a n d  nforstatementNS = 
l e t  Do, D, X = nlabeled(nstatementN '[') (bodyS) 
(Dog 
parallel ( ) ,  
eombinelist ( ~f or ', 

(nlhsN (controlS), 
combinelist ( 'concatenate*', 

map (nf orlistelementN) (f orlistS) ) , 
armngeaspseudoblock(D, X) ) ) 

w h e r e  nforlistelementNS = 
progressions -~ 

eombinelist ('step*', 
map (narithexp N) 

(initialS, inerS, terminalS)) 
iterations 

combinelist ('while*', 
(narithexp N (rhsS) , 
nBoolexpN (conditionS))) 

e l se  --~ combine( 'unitlist*', narithexpNS) 
a n d  nuncondstatementNLS = 

composites -~ nclosedprogramNLS 
e l se  --~ (parallel(), 

parallel ( ) ,  
(jumpingS --~ ndesignexpN (bodyS) 
e l s e  

serial ( (dummyS -.~ 'I' 
assigningS ~ combine~ ('K', conslisting () ,  

nassignexpNS) 
e l se  ~ nfunctiondesigNS), 

(L))))  
w h e r e  t e e  nassignexpNS = 

combine2 ( 'assignandhold', 
(simpleS -.~ nexpNS 
else  --~ nassignexpN(rhsS)), 

nlhsN (lhsS) ) 
a n d  nlabeled(ncategory) (S) = 

taggedS -+ l e t  Do, D, X = nlabeled(ncategory) (bodyS) 
Do, parallel(consdef(labelS, delayX), D), labels 

e l se  ~ ncategoryS 
a n d  nhead(N, N') (S) = 

l e t  Do', D' = map parallel 
(unzip (map nrecdeclN' (select rec S) ) ) 

(parallel (Do': map nnonrecdeclN (select ownness S) ), 
parallel(map nnonrecdeclN (select( ~ .ownness) S) ). 
D', 

serial(map nownarraydeclresetN (select(arraydecluownness) S) ) ) 
w h e r e  nnonrecdcclNS = typedeclS ~-~ ntypedeclNS 

arraydecl S -+ narraydeclNS 
a n d  nrecdeclNS = switchdecl S ~ nswitchdeclNS 

procdecl S -÷  nprocdeclNS 
w h e r e  ntypedecINS = 
• parallel (map ntypedecl' (neeS)) 
w h e r e  ntypedecl~J = 

eonsdef ( (ownnessS ~ ownvariantNJ 
else  -~ d) ,  

combine ('separate', 
initialcon (typeS))) 

a n d  narraydeclNS = 
l e t  J, Z = unzip(map narraysegmentN (bodyS) ) 

w h e r e  narraysegmenlNS' = 
conslisting (ownnessS ~-~ map ownvariantN 
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e l se  --~ nee S'),  
eons~redex ( ' A ', 

constisting(map(K"separate A ") 
(nee S')) 

combine2 ( ' ex pandtoarray' , 
nbplistN (sizeSL 
'x ' ) )  

(neeS') 
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consdef ( eonsli sting ,f ~ 
eons~redcx ('x '~ 

conslisting Z~ 
initialcon (typeS))) 

a n d  nownarraydeclresetNS = 
serial(map nownarraysegmcntreset (bodyS) ) 
-where  nownarraysegmentr esct NS ' = 

serial (map nownarmyreset (neeS') ) 
w h e r e  nownarrayresel J = 

consassigner ( ownvariant N J  , 
combines ( 'parearray*, 

nbplist (sizeS'), 
conslisting (ownvariantNJ, 

initialcon (typeS)))) 
where  nbplistNS' = 

conslisting (map nboundpairNS') 
w h e r e  nboundpairNS' = 

conslisting(ownnessS -~ ( ' -  ~ ', '+ ~ ') 
e l se  --~ map narithexpNS') 

a n d  nswitchdeelNS = 
consdef ( ) , 
consdef (neeS, 

combine: ( 'arrangeasarray ~, 
conslisting (u ( conslisting ('1 ', 

length (niensS) ) ) ), 
conslisling (map ndesigncxpN (niensS) ) ) ) 

a n d  nproedeclNS = 
l e t  Do", D '~, X "  = 

code (bodyS) ~ ncode (derive ( classifiedvariab lesS) N) 
(bodyS) 

else  --~ nlabeled (nstatement (derive ( classi fiedvariab lesS) N ) 
( '1 ')  (bodyS) 

Do", 
consdef(neeS, 

conshexp ( conslisting (f ormalsS) , 
(types = ' c o m m a n d '  -~  X 
else  -~  cons~redex (resultvariant (neeS), 

X,  
initialcon (typeS))) 

where  X = consf~redex(d, 
arrangeasblocU (parallel (map nspecN 

(specpartS) ), 
D 't ' 
X"), 

Z) 
where  nvalue o r = consdef(J, combine('separate', do J)) 
a n d  nspecNS = parallel (map nspec'N (bodyS) ) 

w h e r e  nspeePNJ = 
consdef(J, 

combine ( (needsapplyingNJ --~ delayed 
e lse  --, I) (transfer) 

(specifierS) 
(J)) 

w h e r e  ree 
nexp = ncond(nsimp(nlypeprimary) ) 
w h e r e  ncond(ncategory)NS = 

condS -~ conseondexp (n Boolexp N (conditionS), 
(ncategoryN (lstarmS), 
neond(ncategory) N (2ndarmS)))  

a n d  nsimp (nprimary)NS = 
1compounds ~ combine (monadicvariant (raterS), 

nsimp (nprimary) (randS) ) 
2compounds ~ combinelist (raterS, 

map (nsimp (nprimary) ) 
(lstrandS, 2ndrandS))  I 

a n d  ntypeprimaryNS = constS -+ S 
simpleS .-~ nvariableNS 
e l se  --~ nexpS 
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ro&i  
ior~S 
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so ~hat if ..t is tt (:lass the(, i'nA is a filter that  rejects non- 
members  of A. For example bz(Boolean)  is the function 
rejectal~bullrutkvalue.s" defined above.  So the transfer func- 
tions for Booleatls and strings are respectively in (Boo lean)  
and in ( s t r ing) .  

The ftm(',tion defined by 

/ l o a t , e s . l t  (f) (:~:) = / t e a t  (f (:r ) ) 

t ransforms any  number  producing function into a real- 
produ(:ing function. (This definition exploils the fact tha t  
we consider any  function as operat ing on a sz:ngle argument  
allbeit a list.) More generally, it' t is the transfer  function 
for some class A, then the traHsfer function for A-pro- 
ducers is Bt, where B (Curry ' s  combinator  B [2]) is de- 
fined by 

Bq?: = t@c) 

~ 60 So for instance Bfloat is the function floatresult defined 
above. The  transfer functions for type-procedures are 

y a  therefore Bfloal, Burtfloat and B(in(Boolean)). Since ar- 
0i: rays  are t reated as functions these also serve as transfer  

f t l l le t ions for a r rays .  
o~} Impera t ives  arc treated as nullist-producing furmtions; 

so it would appear  that  the best we can do f e r n  transfer  
2i'i~: func t ion  for lahels is B(bt(null)). H e n c e  t h e  t r ans fe r  fune-  
]t1~ (.ions for nontype procedures and for switches (which are 
;|le! considered as arrays  whose elements are program-closures) 

is B(B(in(null))). 
M~, The  effect of the at)eve provisions for checking argu- 

ments  is tht~t a mismatched procedure, array, label or 
switch is not itself immediate ly  rejected. Ins tead it is modi- 
fied so that  any  result it produces, whenever and if ever it 
is applied, is rejected. Hence  our model is overtolerant  in 

pr~ tha t  a mismatch will not lead to rejection if the procedure 
at1*:- is never applied, or if it is exited unnatural ly  and thus 
tea evades producing a result. Fur thermore ,  a label denotes a 
t,~i,: program-closure and so even when its result, namely  
a,5: nullist, is produced, the context  is never resumed and so 
n~: the cheek never  occurs. Hence tile ident i ty function serves 
tli equally well as transfer function. 
ed: 

i; 

THE CONSTANTS AND PRIMITIVES OF ALGOL 60 

The  correspondence given in this paper  associates with 
each ALGOL 60 text an I A E  in which the identifiers occur- 
ring free are drawn fi'om the following three groups. 

Group I consists of the arithmetical,  Boolean and string con-- 
slants. An arithmetical constant is an unsigned number as defined 
in the AlmoL 60 report, and designates an integer or a (rationM) 
real. However the integers also include ' - ~ '  and '+  co ', used in 
the initiM array bounds of own arrays. The Boolean constants are 
' t r u e '  and ' f a l se '  and designate the truthvMues. The string 
constants are certain character-strings whose first and last items 
are ' ~ ' and ' " ' , respectively; such a constant  designates the 
string obtained by removing its first and last items. (It would be 
possible to avoid an infinity of primitives by considering each 
written tmmbcr and each charaeter-string as having internal 
applicative structure. These might conveniently use such nmnber- 
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fornling and string-forming functions as: dec ima l ( re ,n )=  lOre 
+ n; qttoge(s) = concatenate(u' r , ~, 'u' " ').) 

Group 2 consists of symbols and identifiers whose meaning ~s 
laid down in the ALGOL 60 report, and also a number of identifiers 
coined by us and explained above. We assunm that  any collisions 
between these coinages and Ar~aor, 60 identifiers are avoided by 
some device such as the use of a different typeface, e.g. italic 
instead of roman. 

+ ,  - ,  X , / ,  + ,  T, +~r ,  - ~ z ,  <,  =<, =,  ~ ,  >,  ~ ,  -~, A,  V, 

abs, sign, sqrt, sin,  cos, a,'etan, In, exp, e'ngier 
The infixed operators are taken as (applying to 2-lists, either 2- 
nulnbcr-lists or 2-Boolean-lists. Numerical functions are applic- 
able to both reals, and integers; if n andf loat (n)  are both amenable 
to a fimetion then they yield the same result. The coinages are 

for,  concatenate*, step*, anitlist*, wh.ile*, expandtoarray, 
arrange~asarray, parearray, float, .w~tJtoal~ [n> real ,  i n t ege r ,  
Boolean ,  s t r ing ,  atom 

Gro~tp 3 consists of names for very basic objects. 
null ,  nul l is t ,  suffi.x, {f, B, K,  [, Y,  separate, assignandhold 

nul l  is the predicate that  tests whether a list has zero length. 
nul l is t  is a list of length zero. 
s'u~x makes a list one longer, e.g. 

s'aflix(x) (a,b,c) = (a,b,c,x} 
i f  satisfies the following: 

i f ( t r u e )  = 1st 
i f (false)  = 2nd 

B forms a functional product 
B(t ) ( f )  = hx.tff(z)) 

It is used lit dclaying transfer functions for type t)roeedures 
and formals called by name. 

K produces "cons tan t  functions" 
K (x) (:/) = x 

So for instance K3 is a function whose result is 3 for any argu- 
ment; it is used to tidy up assignments. 

I is the identi ty function, defined by 
[ (x) = x 

i t  plays tim role of dummy statenlents. 
Y is the "fixed-point finder." In so fat' as it is reasonably repre- 

sentable it can be defined by 
Y(F) = l e t  z = separale(nullisl) 

le t  z'  = F ( z )  
2 n d ( ( z ~ z ' )  ,z) 

This definition relies on the fact tha t  when a function-trans- 
former is applied to the (arbitrarily chosen) argument nMl is t ,  
rejection does not occur unless, or until, the argumcnt is 
actually applied. 

separate avoids unwanted side-effects; it is used when parameters 
are called by value. 

assigmtndhold is defined by 
assignandhold(x) (y) = l e t  x = real  y -~ float x 

i n t ege r  y --~ unfloat a: 
Boolean y --~ in(Boolean)x  

2 n d ( ( y ~ x ) , x )  

In  this subsection and the four preceding ones we have  
characterized the abs t rac t  objects compris ing the "domain  
of reference" tha t  our analysis imputes to AL(~OL 60. T h e  
characterization has been part ly formM and par t ly  in- 
formal, taking for granted  such things as numbers ,  propo- 
sitional relations, ere? I a  the next subsection we turn to the  
main (.epic of this paper,  namely how ekLGOL 60 texts can 
be construed as IAEs  referring to these abs t rac t  objects. 

r In [9], BShm is concerned with the formal t reatment  of this 
topic. 
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Landin’s description of ALGOL 60

Virtues

‣ a major example of a correspondence between a 
real programming language and a semantic notation

- concisely documented Landin’s expert analysis

- demonstrated the use of AEs (ISWIM) as a meta-language

Drawbacks

‣ correspondence not tested/validated

- no tool support (?)

‣ sharing of addresses not defined

‣ fixed-point operator Y defined in terms of assigners

19



Landin and Strachey (1960s)

Denotational semantics (1970s)

A current project

20



Christopher Strachey (1916–1975)

Towards a formal semantics. In Proc. IFIP 1964  
Working Conf. on Formal Language Description Languages, 1966.

‣ cited by Landin as an alternative to IAEs

- “to find, for each command, an AE denoting 
the SECD-transformation it effects”

‣ introduces L-values and R-values

- an L-value “denotes an area of the store”

‣ refers to the fixed-point operator Y as “paradoxical”

- cites Landin’s “computing procedure” for it

21



Assignments

‣ Without side-effects:

‣ With side-effects:

22



Strachey’s 1960s approach

Virtues

‣ used to give a correspondence between a developing 
major programming language (CPL) and a semantic notation

‣ applicative definition of addresses, stores, assigners

- avoided the need for an abstract machine

Drawbacks

‣ meta-language left informal

‣ fixed-point operator Y left “paradoxical”

23



Landin and Strachey (1960s)

Denotational semantics (1970s)

A current project
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Autumn 1969

Dana Scott:  Some reflections on 
                 Strachey and his work.

Higher-Order and Symb. Comp. (2000) 13: 103–114

‣ “The semester at Oxford […] was a very 
intense time, working with Strachey, 
meeting Peter Landin, David Park, 
John Reynolds, and many others.  As I 
recounted in my Turing Lecture, I did not 
intend at all to construct models for 
the type-free λ-calculus…”

25



Scott–Strachey semantics

D. S. Scott, C. Strachey:  Towards a mathematical
              semantics for computer languages. 
               Technical Monograph PRG-6, Oxford Univ. Comp. Lab, 1971

‣ least-fixed point operator Y no longer ‘paradoxical’

‣ correspondence between program phrases and their 
denotations in Scott-domains (originally lattices, later cpos)

‣ separation between environments ρ∊Env and stores σ∊S

- C : Cmd → (Env → (S → S))

- E : Exp → (S → (T × S))

26



Scott–Strachey semantics

D. S. Scott, C. Strachey:  Towards a mathematical
              semantics for computer languages. 
               Technical Monograph PRG-6, Oxford Univ. Comp. Lab, 1971

‣ Abbreviations:

- (f ◦ g)(σ) = f (σ′) when g(σ) = σ′

- (f ∗ g)(σ) = f (β)(σ′) when g(σ) = (β, σ′)

- (P β)(σ) = (β, σ)

‣ C⟦γ0 ; γ1⟧ = λρ.  C⟦γ1⟧(ρ) ◦ C⟦γ0⟧(ρ)

‣ C⟦ε → γ0 , γ1⟧ = λρ. Cond(C⟦γ0⟧(ρ), C⟦γ1⟧(ρ)) ∗ E⟦ε⟧

monadic 
notation! 
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PDM:  The mathematical semantics of ALGOL 60.
          Technical Monograph PRG-12, Oxford Univ. Comp. Lab, 1974 

‣ Continuations-style

- C : Sta → (Env → (C → C))  where C = (S → S)

- R : Exp → (Env → (X → (K → C)))  where K = (V → C)

- γ1 || γ2 || θ = γ1{γ2{θ}}

‣ C⟦Sta ; StaL⟧ = λρ. λθ.  C⟦Sta⟧ρ || C⟦StaL⟧ρ || θ

‣ C⟦if Exp then Sta1 else Sta2⟧ = λρ. λθ.  

      R⟦Exp⟧ρ “boolean” { λβ. β → C⟦Sta1⟧ρθ, C⟦Sta2⟧ρθ }

Scott–Strachey semantics 
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SE MANT I C  F UNCT I ONS

c o m p i l e r  � t : P r o g .  � � 0 . � � 0 .

l e t  � 1  = M a k e T y p ( " f n " , M a k e T y p ( " r e a l "  , ? ) )  i n  

" l e t  � 2 = M a k e T y p  ( " f n " , M a k e T y p ( " i n t e g e r " , ? ) )  i n  

l e t  � l  =  � 0 [ Ab s / � 1 / i d " a b s " ]

[ S i g n / � 2 / i d " s i g n " ]

[ S q r t / � 1 / i d " s q r t " ]

[ S i n / � 1 / i d " s i n " ]

[ Co s / � 1 / i d " c o s " ]  

[A r c t a n / � 1 / i d " a r c t a n " ]  

[ L n / � 1 / i d " l n " ] 

[ E x p / � 1 / i d " e x p " ]

[ E n t i e r / � 2 / i d " e n t i e r " ]  

i n

s w i t c h  l a b e l  o f  t  i n

§

c a s e " S t a " : P [[S t a ] ] � l � 0

$

d e f  P  [[ t : S t a  ]] � �  =

l e t  < � * , � * >  =  < I * l ab [ [ t ] ] ,  T* lab[[ t ]]> i n

A r e a  ||

� � . C [ [ t ] ] � [ ( f i x  � * .  G [ [ t ]] � [ � * / � * / � * ] � � )  / � * / � * ]  || �

d e f  C* [[t : S t a L ] ] � �  = s w i t c h  l a b e l o f  t  i n

§

c a s e  " S t a  ; S t a L "  : C [ [ S t a ] ] � | | C * [[ S t a L ]] �  || �

c a s e  " S t a " : C [[S t a ] ] � �$

d e f  C [ [ t : S t a ] ] � �  =  s w i t c h  l a b e l  o f  t  i n

§

c a s e " b e g i n  De c L  D e f L  S t a L  e n d " :

l e t  < � * 1, � *1> =  ( I * de c [ [DecL] ]  , T * de c [ [DecL] ]>  i n

l e t  < � * 2, � *2> =  < I *d e f [ [De fL] ]>  T *de f [ [De fL] ]>  i n  

l e t  < � * 3, � * 3> = < I * l ab[ [St aL] ] ,  T * l ab[ [St aL] ]>  i n  

I n d i s t i n c t  ( � *1 c a t  �*2 c a t  � *3) �  ? ,

A r e a  ||

� � l  .  D* [[D e c L ] ] � [ ? /  ? /  � * 1 c a t  � *2 c a t  � * 3] ||

� � * 1. A r e a  ||

� � 2  . l e t  � 1  =  � [ � * 1/ � * 1/ � * 1] i n

l e t  � 1 = S e t A r e a ( � 1 ) { � }  i n

C * [[S t a L ]] � l ( f i x  � * . l e t  � 2= � 1 [ � * / � * 2 c a t  � * 3/ � * 2 c a t  � *3] in 

H * [[D e f L ]]�2 c a t  G * [[S t a L ]] � 2 � 2 � 1 )

/  � *2 c a t  � * 3 /  � *2 c a t  � * 3] || � 1  

c a s e " b e g i n  S t a L  e n d " : C*[ [St aL] ] � �

c a s e " i f  E x p  t h e n  S t a 1 e l s e  S t a 2 " :

R [ [ E x p ]] �  " b o o l e a n "  { � � .  �  �  C [ [S t a1] ] � � , C [ S t a 2 ]] � � }

c a s e " I d e :S t a " :  l e t  <� , � >  = � [ [ I de ]] i n  H o p ( � )

c a s e " g o t o  E x p " :  J [[Exp] | �  " l a b e l "  || � � .  J u m p ( � )

c a s e " V a r  : =  A s s L " :

l e t  �  =  M a i n ( T v a r [[V a r ] ] � ) i n  A [[ t ]] � � <>  || �

c a s e " f o r  V a r  : = F o r L  do  S t a " :

l e t  �  =  T v a r [ [Var ] ] �  i n  M a i n �  =  " b o o l e a n "  �  ? ,

F * [[F o r L ]] � ( M a i n � ) ( V [[Var ] ] � � )(P[[Sta] ] � ) || �

c a s e " I d e ( E x p L ) " :

C o e r c e (� [ [ I d e ] ] )( M a k e T y p ( " r t " , ? ) ) " e v "  ||

� � .  A p p l y R t  (� ) (U*[ [E x pL ] � ) { � }

c a s e " � " : �

$
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VDM semantics

H. Bekić, D. Bjørner, W. Henhapl, C. B. Jones, P. Lucas:
A formal definition of a PL/I subset.
Tech. Rep. TR 25.139, IBM Lab.  Vienna, Dec. 1974 

‣ Combinators: abbreviations with fixed behaviour 
(definitions dependent on the domains of denotations)

monadic 
notation! 
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W. Henhapl, C. B. Jones: A formal definition of ALGOL 60.
In “The Vienna Development Method:  The Meta-Language”, LNCS 61: 305–336, 1978; 
and Chapter 6 of  “Formal Specification & Software Development”, Prentice-Hall, 1982

‣ M:  Stmt → ENV =>

‣ M:  Expr → ENV => VAL

‣ M[mk-Compound(<s1,s2>)](env) =
  M[s1](env); M[s2](env)

‣ M[mk-If(e,th,el)](env) =
  def b: M[e](env);
  if b then M[th](env) else M[el](env)

VDM semantics

30



W. Henhapl, C. B. Jones: A formal definition of ALGOL 60.
In “The Vienna Development Method:  The Meta-Language”, LNCS 61: 305–336, 1978; 
and Chapter 6 of  “Formal Specification & Software Development”, Prentice-Hall, 1982

‣ M:  Stmt → ENV =>

‣ M:  Expr → ENV => VAL

‣ M[mk-Compound(<s1,s2>)](env) =
  M[s1](env); M[s2](env)

‣ M[mk-If(e,th,el)](env) =
  def b: M[e](env);
  if b then M[th](env) else M[el](env)
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6 . 4 . 6  Co n d i t i o n a l  S t a t eme n t s

Co nd s t m t  : :  s - t e s t : E x p r  s - t h :S t m t  s - e l :S t m t

Th e  e l s e  s t a t e m e n t  i s  a l wa y s  p r e s e n t ,  i f  n e c e s s a r y  t h e  t r a n s l a t o r  i n s e r t s  

a  nu l l  s t a t eme n t .

W F [ m k - Co n d s t m t  ( e ,t h ,e l ) ] ( s e n v ) �= T P [ e ] ( s e n v ) =BOOL

M [ m k - C o n d s t m t ( e , t h , e l ) ]  ( s t m t e n v )  �= 

l e t  ( , e n v , c a s )  =  s t m t e n v  i n  

d e f  b  : M [ e ] ( e n v , c a s ) ;

i f  b  t h e n  M [ s - s p ( t h ) ] ( s t m t e n v ) e l s e  M [ s - s p ( e l ) ] ( s t m t e n v )

6 . 4 . 7  F o r  S t a t eme n t s

Fo r

F o r e l e m

E x p r e l e m

Wh i l e e l e m

S t e p u n t i l e l e m

s - c v : S i m p l e v a r  s - c v t p : A r i t hm  s - f l : F o r e l e m+  s - b : B l o c k

E x p r e l e m  | Wh i l e e l e m  | S t e p u n t i l e l e m

E x p r

s - i n : E x p r  s - wh : E x p r

s - i n : E x p r  s - s t : E x p r  s - u n : E x p r

Th e  b o d y  o f  t h e  a b s t r a c t  f o r m  o f  a  f o r  s t a t eme n t  i s  a l wa y s  a  b l o c k ;  i f  

no t  p r e s e n t  i n  t h e  c o n c r e t e  f o r m  i t  i s  g e n e r a t e d  b y  t h e  t r a n s l a t o r .

WF [ m k - F o r ( c v , c v t p , f l , b ) ] ( s e n v ) �=

i s - s c a l a r ( c v , s e n v ) �  c v t p = TP [ c v ] ( s e n v )

W F [ m k - E x p r e l e m ( e ) ] ( s e n v ) �= TP [e ] ( s e n v ) �  A r i t hm

W F [ m k - Wh i l e e l e m ( i n , wh ) ] ( s e n v ) �=

T P [ i n ] ( s e n v ) � A r i t hm  �  TP [ wh ]  ( s e n v ) =  BOOL

W F [ m k - S t e p u n t i l e l e m ( i n ,  s t , un ) ] ( s e n v ) �=

TP [ i n ] ( s e n v ) � A r i t hm  �  TP [ s t ] ( s e n v ) � A r i t hm  �  T P [ u n ] ( s e n v ) � A r i t hm

M [ m k - F o r ( c v , c v t p , f l e l , b ) ] ( s t e n v ) �=

f o r  i = l  to l e n f l e l  do  M [ f l e l [ i ] ,  c v , c v t p ,  b ] ( s t e n v )

T y p e s  f o r  r e m a i n d e r  o f  t h i s  s ub - s e c t i on :

M :  F o r e l e m  �  Va r  �  T y p e  �  B l o c k  �  STMT ENV  =>
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6 . 3 . 3  Sw i t c h  De c l a r a t i on s

Sw i t c h d e c l  : :  s - i d : I d  s - e x l : E x p r +

W F [ m k - Sw i t c h d e c l ( , e x l ) ] ( s e n v ) �=

( � e x � e l em s e x l ) ( TP [ e x ] ( s e n v ) =LABEL )  

t y p e : Sw i t c hd e c l  �  STAT I CENV  �  Boo l

M [ m k - Sw i t c h d e c l ( , e x l ) ] ( e n v ) �=

l e t  f ( i nd , c a s ) =  ( i f  1 < i nd < l e n e x l

t h e n  M [ e x l [ i n d ] ] ( e n v , c a s } e l s e  e r r o r )

i n  f

t y pe :  Sw i t c hd e c l  �  ENV  �  SW I TCHDEN

Comm e n t  No t i c e  t h a t  t h e  e x p r e s s i o n s  o f  t h e  Sw i t c hd e c l  a r e  e v a l u a t e d  wh e n  

r e f e r e n c e d  ( d y n am i c a l l y ) .  Th e  s t a t i c  e n v i r o nm e n t  ( t ha t  o f  d e �

c l a r a t i on )  i s  us ed .

6 . 3 . 4  P r o c e du r e  De c l a r a t i o n s  —  a l r e a d y  t r e a t e d  i n  s e c t .  6 . 2 . 2

6 . 4  STAT EMENTS

Go t o

P r o c s t m t

" S t a nd a r d "  t ype s :

WF :  Un l a b s t m t  �  STAT I CENV  �  Boo l  

M :  Un l a b s t m t  �  STMT ENV  =>

6 . 4 . 1  Comp o u n d  S t a t eme n t s

S t m t  : :  s - l p :  I d - s e t  s - s p : Un l a b s t m t

Un l a b s t m t  =  Comp s t m t  | B l o c k  | A s s i g n  |

Dummy  | Co n d s t m t  | F o r  I

Comp s t m t  : :  S t m t *

M [ m k - C om p s t m t ( s t l ) ] ( s t e n v ) �=

f o r  i = l  to l e n s t l  do  M [ s - s p ( s t l [ i ] ) ] ( s t e n v )

6 . 4 . 2  B l o c k s  —  a l r e a d y  t r e a t e d  i n  s e c t .  6 . 2 . 1
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WE :  E x p r  �  STAT I CENV  �  Boo l

TP :  E x p r  �  STAT I CENV  �  ( Type  |  LABEL )

M :  E x p r  �  EXPRENV  =>  VAL

6 . 5 . 1  A r i t hm e t i c  Co n s t a n t s

T y p e c o n s t

Bo o l c o n s t

A r i t hm c o n s t

Re a l c o n s t

I n t c o n s t

B o o l c o n s t

Boo l

Re a l c o n s t

Re a l

I n t

A r i t hm c o n s t

I n t c o n s t

Comm e n t  Th e  a b s t r a c t  s y n t a x  c o n t a i n s  t h e  s ema n t i c  ob j e c t s  

t h e i r  r e p r e s e n t a t i on s .
r a t h e r  t h a n

TP [ m k - B o o l c o n s t (b v ) ] ( s e n v ) =  BOOL  

TP [ m k - R e a l c o n s t ( r v ) ] ( s e n v ) =  REAL  

TP [ m k - I n t c o n s t ( i v ) ] ( s e n v ) =  I NT

M [ m k - B o o l c o n s t (bv ) ] ( e x e n v ) 

M [ m k - R e a l c on s t  ( r v ) ] ( e x e n v ) 

M [ m k - I n t c o n s t ( i v ) ] ( e x e n v )

6 . 5 . 2  V a r i a b l e  Re f e r e n c e s

V a r r e f

Va r

S i mp l e v a r

S i mp l e v a r b n

S i m p l e v a r v

Su b s c r v a r

Su b s c r v a r b n

Su b s c r v a r v

Su b s c r s

: Va r

=  S i mp l e v a r  

=  S i mp l e v a r b n  

: s - nm : I d  

: s - nm : I d

�= b v

�= r e p r e s e n t ( r v )  

�= t e s t ( i v )

| Su b s c r v a r  

| S i mp l e v a r v

=  Su b s c r v a r b n  | Su b s c r v a r v  

: s - nm : I d  s - s s c l  : Sub s c r s  

: d - nm : I d  s - s s c l  : Su b s c r s  

: E x p r +

Comm e n t  Th e  d i s t i n c t i o n  i s  ma d e  b e t we e n  r e f e r e n c e s  t o  " b yn ame "  (bn)  

f o r ma l  p a r a m e t e r s  a nd  v a l u e s  (v ). Th e  l a t t e r  c l a s s  i n c l ud e s  

" b y v a l u e "  f o r ma l  p a r a m e t e r s  a nd  no r ma l  v a r i a b l e s .

W F [ m k - S i mp l e v a r b n ( i d ) ] ( s env )  �= s e n v ( i d ) � Ty pe  

W F [ m k - S i m p l e v a r v ( i d ) ] ( s e n v ) �= s e n v ( i d ) � Type

VDM semantics
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Further reading

PDM:   VDM semantics of programming languages:
         combinators and monads.
         Formal Aspects of Computing (2011) 23: 221–238 

C. B. Jones:  Semantic descriptions library
                homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

‣ searchable on-line resources 

- descriptions of ALGOL 60 in various frameworks

‣ scanned manuscripts

- VDM descriptions of programming languages

- VDL description of PL/I

- …

new!
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Landin and Strachey (1960s)

Denotational semantics (1970s)

A current project
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Component-based semantics

fundamental programming 
constructs (funcons)

evolving languages

translation
(correspondence)

components-off-the-shelf

open-ended collection
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Component-based semantics

A60-4.cbs

Language "ALGOL 60"

Section 4 Statements

Syntax
S: statement ::= ( variable ':=' )+ expression

| 'go' 'to' designational-expression
| empty
| identifier
| identifier '(' actual-parameter-list ')'
| label ':' statement
| 'begin' compound-tail
| block-head ';' compound-tail
| 'if' expression 'then' statement
| 'if' expression 'then' statement 'else' statement
| 'for' variable ':=' for-list 'do' statement

Syntax
compound-tail ::= statement ( ';' statement )* 'end'

Syntax
block-head ::= 'begin' declaration ( ';' declaration )*

Syntax
FL: for-list ::= for-list-element ( ',' for-list-element )*

Syntax
FLE:for-list-element ::= expression

| expression 'step' expression 'until' expression
| expression 'while' expression

Semantics
  execute[[ _:(statement ( ';' statement )*) ]] : commands

Rule
  execute[[ S1 ';' S2 ...]] =
  sequential(execute[[S1]], execute[[S2 ...]])

Rule
  execute[[ 'if' E 'then' S1 'else' S2 ]] =
  if-true(evaluate[[E]], execute[[S1]], execute[[S2]])
  
 Rule
  execute[[ I ':=' E ]] = 
  assign(bound-value(I), 
    transfer(type(bound-value(I)), evaluate[[E]])
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Reusable components

Fundamental constructs (funcons)

‣ correspond to programming constructs

- directly (sequential, scope, …)

- special case (if-true, apply, assign,…)

- implicit (bound-value, …)

‣ and have (when validated and released)

- fixed notation

- fixed behaviour

- fixed algebraic properties

specified/proved 
once and for all! 
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PLANCOMPS project (2011-2015)

Foundations

‣ component-based semantics, bisimulation [Swansea]

‣ GLL parsing, disambiguation [RHUL]

Case studies

‣ CAML LIGHT, C#, JAVA [Swansea]

Tool support

‣ IDE, funcon interpreter/compiler [RHUL, Swansea]

Digital library

‣ interface [City], historic documents [Newcastle]
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λ-notation + Y

Scott-domains

PDM

Summary

combinators

Henhapl & Jones funcons

modular SOS

PLANCOMPS

abstract machines

λ-notation + Y 
+ J + ⇐

Landin

ALGOL 60

foundations
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