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Abstract. Modularity has been recognised as a problematic issue of
programming language semantics, and various semantic frameworks have
been designed with it in mind. Reusability is another desirable feature
which, although not the same as modularity, can be enabled by it. The
K Framework, based on Rewriting Logic, has good modularity support,
but reuse of speci�cations is not as well developed.
The PLanCompS project is developing a framework providing an open-
ended collection of reusable components for semantic speci�cation. Each
component speci�es a single fundamental programming construct, or
`funcon'. The semantics of concrete programming language constructs is
given by translating them to combinations of funcons. In this paper, we
show how this component-based approach can be seamlessly integrated
with the K Framework. We give a component-based de�nition of CinK
(a small subset of C++), using K to de�ne its translation to funcons as
well as the (dynamic) semantics of the funcons themselves.

1 Introduction

Even very di�erent programming languages often share similar constructs. Con-
sider OCaml's conditional `if E1 then E2 else E3' and the conditional oper-
ator `E1 ? E2 : E3' in C. These constructs have di�erent concrete syntax but
similar semantics, with some variation in details. We would like to exploit this
similarity when de�ning formal semantics for both languages by reusing parts of
the OCaml speci�cation in the C speci�cation. With traditional approaches to
semantics, reuse through �copy-paste-and-edit� is usually the only option that
is available to us. By default, this is also the case with the K Framework [9,13].
This style of speci�cation reuse is not systematic, and prone to error.

The semantic framework currently being developed by the PLanCompS
project1 provides fundamental constructs (funcons) that address the issues of
reusability in a systematic manner. Funcons are small semantic entities which
express essential concepts of programming languages. These formally speci�ed
components can be composed to capture the semantics of concrete program-
ming language constructs. A speci�cation of Caml Light has been developed as
an initial case study [3] and a case study on C# is in progress.

For example, the funcon if-true can be used to specify OCaml's conditional
expression. Semantics is given by de�ning a translation from the concrete con-
struct to the corresponding funcon term:

1 http://www.plancomps.org/

http://www.plancomps.org/
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Jif E1 then E2 else E3K = if-true(JE1K, JE2K, JE3K)

Since the conditional operator in C uses integer valued expressions as the
condition, its translation will re�ect this:

JE1 ? E2 : E3K = if-true(not(equal(JE1K, 0)), JE2K, JE3K)

We could also de�ne an if-non-zero funcon that would match the C-
conditional semantics exactly. However, the translation using if-true is so simple
that there wouldn't be much advantage in doing so. We can reuse the if-true

funcon, and with it, its semantic de�nition. This way, we also make the di�erence
between the OCaml and C conditional construct transparent. Section 2 provides
more information on funcons.

The project uses MSOS [10], a modular variant of structural operational
semantics [11], to formally de�ne individual funcons. However, the funcon ap-
proach can be seamlessly integrated with other su�ciently modular speci�cation
frameworks. In this paper we demonstrate how users of the K Framework might
bene�t from using funcons. We give a speci�cation of CinK [8,9], a pedagogical
subset of C++, by de�ning the translation using K's rewrite rules (Section 3). We
also de�ne the semantics of funcons involved in the translation and present some
of them in Section 4. Section 5 o�ers an overview of related work and alternative
approaches. We conclude and suggest directions of future work in Section 6.

The complete prototyped speci�cation of CinK and K de�nitions of all fun-
cons involved in the speci�cation are available online.2 Also included are CinK
test programs which we have used to test our speci�cation. Interested readers
may run these programs themselves using the K tool. The original executable
speci�cation of CinK by Lucanu and S, erb nut,  is available on GitHub.3

2 Fundamental Constructs

As mentioned in the Introduction, the PLanCompS project is developing an
open-ended collection of fundamental programming constructs, or `funcons'.
Many funcons correspond closely to simpli�ed programming language constructs.
However, each funcon has �xed syntax and semantics. For example, the funcon
written assign(E1, E2) has the e�ect of evaluating E1 to a variable, E2 to a value
(in any order), then assigning the value to the variable; it is well-typed only if E1
is of type variables(T) and E2 is of type T. In contrast, the language construct
written `E1 = E2' may be interpreted as an assignment or as an equality test
(and its well-typedness changes accordingly) depending on the language.

The syntax or signature of a funcon determines its name, how many argu-
ments it takes (if any), the sort of each argument, and the sort of the result.
The following computation sorts re�ect fundamental conceptual and semantic
distinctions in programming languages.

2 http://cs.swan.ac.uk/~csfvesely/wrla2014/
3 https://github.com/kframework/cink-semantics

http://cs.swan.ac.uk/~csfvesely/wrla2014/
https://github.com/kframework/cink-semantics
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� The sort Comm (commands) is for funcons (such as assign(E1, E2)) that are
executed only for their e�ects; on normal termination, a command computes
the �xed value skip.

� The sort Expr (expressions) is for funcons (such as stored-value(E) and
bound-value(I)) that compute values of sort Values.

� The sort Decl (declarations) is for funcons (such as bind-value(I, E)) that
compute environments of sort Environments, which represent sets of bindings
between identi�ers and values.

All computation sorts include their sorts of computed values as subsorts: a value
takes no steps at all to compute itself.

One of the aims of the PLanCompS project is to establish an online repository
of funcons (and data types) for anybody to use `o�-the-shelf' as components of
language speci�cations. The project is currently testing the reusability of existing
funcons and developing new ones in connection with some major case studies
(including Caml Light, C#, and Java). Because individual funcons are meant
to represent fundamental concepts in programming languages, many funcons
(expressing, e.g., sequencing, conditionals, variable lookup and dereferencing)
have a high potential for reuse. In fact, many funcons used in the Caml Light
case study appear in the semantics of CinK presented in the following section.

The nomenclature and notation for the existing funcons are still evolving,
and they will be �nalised only when the case studies have been completed, in
connection with the publication of the repository. Observant readers are likely
to notice some (minor) di�erences between the funcon names used in this paper
and in previous papers (e.g. [3]).

Regardless of the details of funcon notation, funcons can be algebraically
composed to form funcon terms, according to their argument sorts (strictly lifted
to corresponding computation sorts) and result sorts. Well-formedness of funcon
terms is context-free: assign(E1, E2) is a well-formed funcon term whenever E1
and E2 are well-formed funcon terms of sort Expr. In contrast, well-typedness
of funcon terms is generally context-sensitive. For example, the funcon term
assign(bound-value(I), 42) is well-typed only in the scope of a declaration
that binds I to an integer variable. Dynamic semantics is de�ned for all well-
formed terms; execution of ill-typed terms usually fails.

The composability of funcons does not depend on features such as whether
they might have side e�ects, terminate abruptly, diverge, spawn processes, inter-
act, etc. This is crucial for the reusability of the funcons. The semantics of each
funcon has to be speci�ed without regard to the context in which it might be
used, which requires a highly modular speci�cation framework. Funcon speci�-
cations have previously been given in MSOS, Rewriting Logic, ASF+SDF, and
action notation. Here, we explore specifying funcons in K, following Ros,u.4

A component-based semantics of a programming language is speci�ed by a
context-free grammar for an abstract syntax for the language, together with
a family of inductively speci�ed functions translating abstract syntax trees to

4 k/examples/funcons in the stable K distribution at http://www.kframework.org

http://www.kframework.org
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funcon terms. The static and dynamic semantics of a program is given by that of
the resulting funcon term. As mentioned above, funcons have �xed syntax and
semantics. Thus, evolution of a language is expressed as changes to translation
functions. If the syntax or semantics of the programming language changes, the
de�nition of the translation function is updated to re�ect this.

Tool support for translating programs to funcon terms, and for executing the
static and dynamic semantics of such terms, has previously been developed in
Prolog [2], Maude [1] and ASF+SDF. We now present our experiment with K,
focusing on dynamic semantics.

3 CinF: a Funcon Speci�cation of CinK

This section presents an overview of our CinK speci�cation using funcons. We
include examples from the K sources of the speci�cation. A selection of de�nitions
of funcons involved in the speci�cation can be found in Section 4.

CinK is a pedagogical subset of C++ [8,9] used for experimentation with
the K Framework. The original report [8] presents the language in seven it-
erations. The �rst speci�es a basic imperative language; subsequent iterations
extend it with threads, model-checking, references, pointers, and unidimensional
and multi-dimensional arrays. Our speci�cation starts with only an expression
language which we extend with declarations, statements, functions, threads, ref-
erences, and pointers. The extensions follow the order of the CinK iterations,
however we omit arrays and support for model-checking.

The grammar which we have used for our speci�cation is a simpli�ed gram-
mar matching CinK derived from the C++ grammar found in the standard [7,
Appendix A].

We invite the reader to compare our speci�cation by translation to funcons
with the original K speci�cation of CinK in [8]. Our hope is that our trans-
lation functions, together with the suggestive naming of funcons give a rough
understanding of the semantics of language constructs, even before looking at
the semantics of funcons themselves.

3.1 Simple Expressions

To give semantics for expressions we use the translation function evaluateJ_K
: Expression → Expr. It produces a funcon term (of sort Expr) which, when
executed, evaluates the argument expression.

De�nitions for arithmetic expressions in CinK can be given very straightfor-
wardly using data operations, which all extend to strict funcons on Expr. Numeric
types in CinK are limited to integers with some common operations. For exam-
ple, semantics of the multiplication operator is expressed as the application of
the operation int-times to translations of operand expressions:

rule evaluateJ E1:Expression * E2:Expression K ⇒
int-times(evaluateJ E1 K, evaluateJ E2 K)
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The `short-circuit and' operator can be readily expressed using a conditional
funcon, which is strict only in its �rst argument. The K de�nition for if-true

can be found in Section 4.

rule evaluateJ E1:Expression && E2:Expression K ⇒
if-true(evaluateJ E1 K, evaluateJ E2 K, false)

We will use the generic if-true funcon later in this section to de�ne the condi-
tional statement.

3.2 Variables, Blocks and Scope

Bindings and Variables Semantics of declarations are given using
elaborateJ_K : DeclarationSeq → Decl. The bind-value(I, V) funcon binds
the identi�er I to the value V, producing a `small' environment containing only
the newly created binding. To allocate a new variable of a speci�ed type we use
allocate. In Caml Light, bind-value is used for individual name-value bindings
in let-expressions and allocate for reference data types (e.g. �ref int�).

rule elaborateJ T:TypeSpecifier I:Id ; K ⇒
bind-value(I, allocate(variables(typeJ T K)))

In relation to variables, CinK (following C++) distinguishes between two
general categories of expressions: lvalue- and rvalue-expressions. We express this
distinction by having di�erent translation functions for expressions in lvalue
and rvalue contexts: in addition to evaluateJ_K, we de�ne evaluate-lvalJ_K
and evaluate-rvalJ_K. The default function evaluateJ_K produces terms eval-
uating lvalue and rvalue expressions according to their category. When an
expression is expected to evaluate to an lvalue, we use evaluate-lvalJ_K,
which is unde�ned on rvalue expressions. When an rvalue is expected, we use
evaluate-rvalJ_K which produces terms evaluating all expressions into rvalues.
For lvalue expressions it returns the corresponding stored value, i.e., it serves as
an lvalue-to-rvalue conversion.

The addition of variables also a�ects our translations of simple expressions
and we need to update them. For example, numeric operations expect an rvalue
and thus the operands are now translated using evaluate-rvalJ_K.

To get the variable bound to an identi�er in the current environment we use
bound-value. A variable is dereferenced using stored-value. The semantics for
an identi�er appearing in an lvalue or rvalue context is thus:

rule evaluate-lvalJ I:Id K ⇒ bound-value(I)
rule evaluate-rvalJ I:Id K ⇒ stored-value(evaluate-lvalJ I K)

Blocks and Controlling Scope We distinguish between declaration state-
ments and other statements within a block using funcons scope and seq. The
funcon scope(D, X) evaluates X in the current environment overridden with the
environment computed by D. A declaration statement within a block produces a
new environment that is valid until the end of the block:
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rule executeJ BD:BlockDeclaration SS:StatementSeq K ⇒
scope(elaborateJ BD K, executeJ SS K)

The function executeJ_K : StatementSeq→ Comm translates statements to funcon
commands.

For all other kinds of statements in a block we use the simple sequencing
funcon seq(C, X) which executes the command C for side e�ects and then exe-
cutes X.

rule executeJ BS:BlockStatement SS:StatementSeq K ⇒
seq(executeJ BS K, executeJ SS K)

To accumulate multiple declarations into one environment we use the accum

funcon. The funcon accum(D1, D2) is similar to scope, except its result is the
environment produced by elaborating declaration D2 and overriding the environ-
ment computed by D1 with it. This matches the semantics of a multi-variable
declaration:

rule elaborateJ T:TypeSpecifier ID:InitDeclarator ,
IDL:InitDeclaratorList ; K ⇒

accum(elaborateJ T ID ; K, elaborateJ T IDL ; K)

Note that accum is strict in its �rst argument and so the correct order of
evaluation is enforced.

Although Caml Light and CinK are quite di�erent languages, all the funcons
we needed so far are reused from [3].

3.3 Assignment and Control Statements

The basic construct for updating variables in CinK/C++ is the assignment ex-
pression `E1 = E2', where the expression E1 is expected to evaluate to an lvalue,
to which the rvalue of E2 will be assigned. The value of the whole expression
is the lvalue of E1. Semantics of assignment is a rather simple translation using
the assign-giving-variable funcon:

rule evaluate-lvalJ E1:Expression = E2:Expression K ⇒
assign-giving-variable(evaluate-lvalJ E1 K, evaluate-rvalJ E2 K)

The funcon assign-giving-variable is strict in both arguments but not se-
quentially, so the arguments are evaluated in an unspeci�ed order. The funcon
assigns the value given as its second argument to the variable given as its �rst
argument and returns this variable as result.

CinK has boolean-valued conditions and the translations of while- and if-
statements are trivial:

rule executeJ while ( E:Expression ) S:Statement K ⇒
while-true(evaluate-rvalJ E K, executeJ S K)

rule executeJ if ( E:Expression ) S:Statement K ⇒
executeJ if ( E ) S else { } K

rule executeJ if ( E:Expression ) S1:Statement else S2:Statement K ⇒
if-true(evaluate-rvalJ E K, executeJ S1 K, executeJ S2 K)
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3.4 Function De�nition and Calling

We represent functions as abstraction values which wrap any computation as a
value. An abstraction can be passed as a parameter, bound to an identi�er, or
stored like any other value. To turn a funcon term into an abstraction, we use
the abstraction value constructor. The funcon apply applies an abstraction to
a value and the abstraction may refer to the passed value using given. Multiple
parameters can be passed as a tuple constructed via tuple value constructors.

A function call expression simply applies the abstraction to translated argu-
ments:

rule evaluate-rvalJ E1:Expression ( E2:Expression ) K ⇒
apply(evaluate-rvalJ E1 K, evaluate-paramsJ tuple(E2) K)

At this stage the language only supports call-by-value semantics and so each
parameter is evaluated to an rvalue before being passed to a function. The trans-
lation function evaluate-paramsJ_K (de�ned in terms of evaluate-rvalJ_K)
recurses through the parameter expressions and constructs a tuple.

rule evaluate-paramsJ tuple(E1:Expression , E2:Expression) K ⇒
tuple-prefix(evaluate-rvalJ E1 K, evaluate-paramsJ tuple(E2) K)

rule evaluate-paramsJ tuple(E:Expression) K ⇒
tuple-prefix(evaluate-rvalJ E K, tuple(.))

We have introduced the auxiliary abstract syntax tuple(E) to ensure that param-
eters separated by commas are not interpreted as a comma-operator expression.

We use patterns as translations of function parameters. Patterns themselves
are abstractions which compute an environment when applied to a matching
value. The pattern for passing a single parameter by value allocates a variable of
the corresponding type and binds it to an identi�er; then it assigns the parameter
value to the variable and returns the resulting environment.

rule patternJ T:TypeSpecifier I:Id K ⇒
abstraction(
accum(bind-value(I, allocate(variables(typeJ T K))),
decl-effect(assign(bound-value(I), given))))

Here we use the funcon decl-effect(C), which allows using a command C as a
declaration. It is an abbreviation for seq(C, bindings(.)).

Roughly, the semantics of a function de�nition is to allocate storage for an
abstraction of the corresponding type, bind it to the function name, and use it
to store an abstraction of the function body. Looking closer, the de�nition has
to deal with some more details:

rule elaborateJ T:TypeSpecifier I:Id ( PDL:ParameterDeclarationList )
CS:CompoundStatement K ⇒

decl-effect(assign(bound-value(I),
close(abstraction(
scope(match-compound(pattern-tupleJ PDL K, given),
catch(seq(executeJ CS K, throw(variant(returned, null))),
abstraction(original(returned, given))))))))
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Within the abstraction we use match-compound to match the passed value against
the pattern tuple constructed from individual parameter patterns. The transla-
tion of the function body is evaluated in the environment produced by this
matching (scope). Since a return statement abruptly terminates a function re-
turning a value, we represent return statements as exceptions containing a value
tagged with the atom `returned' and wrap the function body in a handler. The
catch funcon catches the exception and the handling abstraction retrieves the
value tagged with `returned', making it the return value of the whole function.
In case there was no return statement in the body of the function, we throw
a `returned' with null. Using close we form a closure of the abstraction with
respect to the de�nition-time environment. This imposes static scopes for bind-
ings.

As mentioned above, an explicit return statement translates to throwing a
value tagged with `returned'. A parameterless return throws a null.

rule executeJ return E:Expression; K ⇒
throw(variant(returned, evaluate-rvalJ E K))

rule executeJ return ; K ⇒ throw(variant(returned, null))

As a simple way of allowing self- and mutually recursive function de�nitions,
we pre-allocate function variables and bind all function names declared at the
top-level in a global environment using evaluate-forwardsJ_K. Then we com-
bine this environment with the elaboration of full function de�nitions and other
declarations. The main function is called in the scope of the global environment.

rule translateJ DS:DeclarationSeq K ⇒
scope(accum(elaborate-forwardsJ DS K, elaborateJ DS K),
effect(apply(evaluate-rvalJ main K, tuple(.))))

Because function identi�ers are already bound when the full function de�-
nition is elaborated, the full de�nition only assigns the abstraction to the pre-
allocated variable.

3.5 Threads

The second iteration in the original CinK report adds very basic thread support
to the language. Spawning a thread in CinK mimics the syntax of using the
std::thread class from the C++ standard library. However, instead of referring
to the standard library, semantics is given to the construct directly.

rule elaborateJ std::thread I1:Id ( I2:Id , E:Expression ) ; K ⇒
decl-effect(effect(spawn(close(abstraction(evaluateJ I2 (E) K)))))

The funcon spawn(A) creates a new thread in which the abstraction A will
be applied. In our case the abstraction contains a function call corresponding to
the parameters given to the thread constructor.

3.6 References

A reference in C++ is an alias for a variable, i.e., it introduces a new name for
an already existing variable.
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rule elaborateJ T:TypeSpecifier & I:Id = E:Expression K ⇒
bind-value(I, evaluate-lvalJ E K)

The expression E is expected to be an lvalue and we bind the resulting variable
to identi�er I. We are assuming that the input program is statically correct and
thus the variable will have the right type.

A reference parameter pattern simply binds I to the given variable.

rule patternJ T:TypeSpecifier & I:Id K ⇒
abstraction(bind-value(I, given))

Before introducing references, we evaluated function parameters to an
rvalue. Now the function evaluate-paramJ_K has to be rede�ned in terms of
evaluateJ_K instead of evaluate-rvalJ_K. Dereferencing is handled condition-
ally inside the parameter pattern.

rule patternJ T:TypeSpecifier I:Id K ⇒
abstraction(
accum(bind-value(I, allocate(variables(typeJ T K))),
decl-effect(assign(bound-value(I), current-value(given)))))

The funcon current-value dereferences its parameter if it is a variable (lvalue),
otherwise returns the parameter itself.

3.7 Pointers

The last CinK extension that we consider is the addition of pointers to the
language. Pointers are variables that hold addresses to other objects in memory.
A pointer declaration allocates a new object for holding locations (variables in
our terminology). Our semantics of declarations uses types to allocate storage
and a pointer declaration complicates matters. Here we present a simpli�ed
version only supporting single-level indirection. The complete version has to
deal with the notoriously complicated syntax for pointer declarations in C++.

rule elaborateJ T:TypeSpecifier * I:Id ; K ⇒
accum(bind-value(I, allocate(variables(typeJ T * K))))

rule typeJ T:TypeSpecifier * K ⇒ pointers(typeJ T K)

For our full speci�cation of pointers, we refer the reader to the online material.
Explicit dereferencing of a pointer variable amounts to retrieving the value

stored in the pointer. This value is the location to which the pointer is pointing.
This is expressed in our translation:

rule evaluate-lvalJ * E:Expression K ⇒
stored-value(evaluate-rvalJ E K)

A Note on Reuse The complete funcon de�nition of CinK available online uses 26
funcons. Of these, 19 have been previously used in the speci�cation of Caml Light
and only 7 were introduced in the present work, 3 of which are just abbreviations
for longer funcon terms. It is thus possible to conclude that the reuse of funcons
between the Caml Light and CinK speci�cations is high, even if the languages
are quite di�erent.
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3.8 Con�guration

The con�guration of the �nal iteration of our speci�cation is as follows:

configuration
<T>
<threads>
<thread multiplicity="*">
<name> main:Threads </name>
<k> translateJ $PGM:TranslationUnit K </k>
<xstack> .List </xstack>
<context>
<env> .Map </env>
<given> no-value </given>

</context>
</thread>

</threads>
<store> .Map </store>
<output stream="stdout"> .List </output>
<input stream="stdin"> .List </input>

</T>

It appears that this con�guration could be generated from the K rules de�ning
the funcons used in our speci�cation of CinK. It is unclear to us whether inference
of K con�gurations from arbitrary K rules is possible, and whether it would be
consistent with the K con�guration abstraction algorithm.

3.9 Sequencing of Side E�ects

Following the C++ standard [7], CinK decouples side e�ects of some constructs
to allow delaying memory writes to after an expression value has been returned.
This gives compilers more freedom for performing optimisations and during code
generation. The newest C++ standard uses a relation sequenced before to de�ne
how side e�ects are to be ordered with respect to each other and to value evalu-
ation. The CinK speci�cation uses auxiliary constructs for side e�ects and uses
a bag to collect side e�ects. An auxiliary sequence point construct forces �nal-
isation of side e�ects in the bag. We are currently experimenting with funcons
to express decoupled side e�ects.

4 Funcons in K

We now illustrate our K speci�cation of the syntax and semantics of the funcons
and value types used in our component-based analysis of CinF. We specify each
funcon and value type in a separate module, to facilitate selective reuse. Since
modularity is a signi�cant feature of our speci�cations, we show some of the
speci�ed imports. The complete speci�cations are available online, together with
the K speci�cation of the translation of CinF programs to funcons.
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4.1 Expressions

Expressions compute values:

module EXPR imports VALUES
syntax Expr ::= Values
syntax KResult ::= Values

Our speci�cations of value types lift the usual value operations to expression
funcons, each of which is strict in all its arguments:

module INTEGERS imports EXPR ...
syntax Expr ::= "int-times" "(" Expr "," Expr ")" [strict]

| ...
syntax Values ::= Int
rule int-times(I1:Int, I2:Int) ⇒ I1 *Int I2
rule ...

In contrast, the conditional expression funcon if-true(E1, E2, E3) is strict only
in E1, and its rules involve unevaluated expression arguments:

module IF-TRUE-EXPR imports EXPR ...
syntax Expr ::= "if-true" "(" Expr "," Expr "," Expr ")" [strict(1)]
rule if-true(true, E:Expr, _) ⇒ E
rule if-true(false, _, E:Expr) ⇒ E

We specify a corresponding funcon for conditional commands separately, since it
appears that K modules cannot have parametric sorts (although the rules above
could be generalised to arbitrary K arguments).

4.2 Declarations

module DECL imports BINDINGS
syntax Decl ::= Bindings
syntax KResult ::= Bindings

Bindings are values corresponding to environments (mapping identi�ers to val-
ues), and come equipped with some operations that can be used to compose
declarations:

module BINDINGS imports DECL
syntax Bindings ::= bindings(Map)
syntax Decl ::= "bindings-union" "(" Decl "," Decl ")" [strict]
rule bindings-union(bindings(M1:Map), bindings(M2:Map)) ⇒
bindings(M1 M2)

We could have included the funcon bind-value(I,E) as an operation in the above
module, since it is strict in its only expression argument:

module BIND-VALUE imports ...
syntax Decl ::= "bind-value" "(" Id "," Expr ")" [strict(2)]
rule bind-value(I:Id, V:Values) ⇒ bindings(I |-> V)
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In contrast, the following funcons involve inspecting or (temporarily) changing
the current environment, which is assumed to be in an accompanying cell:

module BOUND-VALUE imports ...
syntax Expr ::= "bound-value" "(" Id ")"
rule <k> bound-value(I:Id) ⇒ V:Values ...</k>

<env>... I |-> V ...</env>

module SCOPE-COMM imports ...
syntax Comm ::= "scope" "(" Decl "," Comm ")" [strict(1)]
rule <k> scope(bindings(Env:Map), C:Comm) ⇒

reset-env(Env’, C) ...</k>
<env> Env’:Map ⇒ Env’[Env] </env>

module ACCUM imports ...
syntax Decl ::= "accum" "(" Decl "," Decl ")" [strict(1)]
rule <k> accum(bindings(Env:Map), D:Decl) ⇒

reset-env(Env’, bindings-union(bindings(Env), D)) ...</k>
<env> Env’:Map ⇒ Env’[Env] </env>

The auxiliary operation reset-env(M, K) preserves the result of K when resetting
the current environment to M:

module RESET-ENV
syntax K ::= "reset-env" "(" Map "," K ")" [strict(2)]
rule <k> reset-env(Env:Map, V’:KResult) ⇒ V’ ...</k>

<env> _:Map ⇒ Env </env>

The K argument could be of sort Expr, Decl or Comm. Since we do not
use reset-env directly in the translation of CinF to funcons, the fact that
reset-env(M, K) is (semantically) of the same sort as K is irrelevant.

4.3 Commands

module COMM imports SKIP
syntax Comm ::= Skip
syntax KResult ::= Skip

In contrast to the usual style in K speci�cations, commands compute the unique
value skip:Skip on normal termination, rather than dissolving. However, this
di�erence does not a�ect the translation of programs to funcons.

module SEQ-DECL imports ...
syntax Decl ::= "seq" "(" Comm "," Decl ")" [strict(1)]
rule seq(skip, D:Decl) ⇒ D

As with if-true, the funcon seq(C, X) is essentially generic in X, but its syn-
tax needs to be speci�ed separately for each sort of X. In contrast, the sort of
effect(X) is independent of the sort of X, and we can specify it generically:

module EFFECT imports COMM
syntax Comm ::= "effect" "(" K ")" [strict]
rule effect(_:KResult) ⇒ skip
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The speci�cation of while-true illustrates reuse between funcon speci�cations:

module WHILE-TRUE
imports COMM
imports EXPR
imports IF-TRUE-COMM
imports SEQ-COMM
syntax Comm ::= "while-true" "(" Expr "," Comm ")"
rule while-true(E:Expr, C:Comm) ⇒

if-true(E, seq(C, while-true(E, C)), skip)

4.4 Variables

Variables are themselves treated as values:

module VARIABLES imports ...
syntax Variables ::= "no-variable"
syntax Values ::= Variables

The speci�cations of the funcons for allocating, assigning to, and inspecting the
values stored in variables are much as usual, and we omit them here.

4.5 Functions

module FUNCTIONS imports ...
syntax Functions ::= "abstraction" "(" Expr ")"
syntax Values ::= Functions

The operation abstraction(E) constructs a value from an unevaluated expres-
sion E. It can then be closed to obtain static bindings for identi�ers in E (the K
speci�cation of the funcon close(E) is unsurprising, and omitted here).

module APPLY imports ...
syntax Expr ::= "apply" "(" Expr "," Expr ")" [strict]
rule apply(abstraction(E:Expr), V:Values) ⇒ supply(V, E)

The funcon supply(E1, E2) makes the value of E1 available as `given' in the
evaluation of E2:

module SUPPLY-EXPR imports ...
syntax Expr ::= "supply" "(" Expr "," Expr ")" [strict(1)]
rule <k> supply(V:Values, E:Expr) ⇒ reset-given(V’, E) ...</k>

<given> V’ ⇒ V </given>

module GIVEN imports ...
syntax Expr ::= "given"
rule <k> given ⇒ V:Values ...</k> <given> V </given>

The speci�cations of the funcons throw and catch assume that all cells used
to represent the current context of a computation are grouped under a unique
context cell. This gives improved modularity: the speci�cation remains the same
when further contextual cells are required. In other respects, the speci�cation
follows the usual style in the K literature, using a stack of exception handlers:
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module THROW imports ...
syntax Comm ::= "throw" "(" Expr ")" [strict]
rule <k> (throw(V’:Values) ~> _) ⇒ (apply(F, V’) ~> K) </k>

<xstack> (F:Functions, K:K, B:Bag) ⇒ . ...</xstack>
<context> _ ⇒ B </context>

module CATCH imports ...
syntax Expr ::= "catch" "(" Comm "," Expr ")" [strict(2)]
rule <k> (catch(C:Comm, F:Functions) ⇒ (C ~> popx)) ~> K </k>

<xstack> . ⇒ (F, K, B) ...</xstack>
<context> B:Bag </context>

syntax K ::= "popx"
rule <k> popx ⇒ . </k> <xstack> _:ListItem ⇒ . ...</xstack>

Funcons throw and catch have the most complicated de�nitions of all, yet
they are still modest in size and complexity.

5 Related Work

The work in this paper was inspired by a basic speci�cation of the IMP exam-
ple language in funcons using K by Ros,u. IMP contains arithmetic and boolean
expressions, variables, if- and while-statements, and blocks. The translation to
funcons is speci�ed directly using K rewrite rules without de�ning sorted trans-
lation functions. The example can be found in the stable K distribution.5

CinK, the sublanguage of C++ that we use as a case study in this paper, is
taken from a technical report by Lucanu and S, erb nut,  [8]. We have limited
ourselves to the same subset of C++, except that we omit arrays.

SIMPLE [12] is another K example language which is fairly similar to CinK.
The language is presented in two variants: an untyped and a typed one. The
de�nition of typed SIMPLE uses a di�erent syntax and only speci�es static
semantics. With the component-based approach, we specify a single translation
of language constructs to funcons. The MSOS of the funcons de�nes separate
relations for typing and evaluation; in K, it seems we would need to provide a
separate static semantics module for each funcon, since the strictness annotations
and the computation rules are di�erent.

K speci�cations scale up to real-world languages, as illustrated by Ellison's
semantics of C [4]. The PLanCompS project is currently carrying out major case
studies (C#, Java) to examine how the funcon-based approach scales up to large
languages, and to test the reusability of the funcon speci�cations.

Speci�cation of individual language constructs in separate K modules was
proposed by Hills and Ros,u [6] and further developed by Hills [5, Chapter 5].
They obtained reusable rules by inferring the transformations needed for the
rules to match the overall K con�guration. The reusability of their modules
was limited by their dependence on language syntax, and by the fact that the
semantics of individual language constructs is generally more complicated than
that of individual funcons.

5 http://www.kframework.org

http://www.kframework.org
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6 Conclusion

We have given a component-based speci�cation of CinK, using K to de�ne the
translation of CinK to funcons as well as the (dynamic) semantics of the funcons
themselves. This experiment con�rms the feasibility of integrating component-
based semantics with the K Framework.

The K speci�cation of each funcon is an independent module. Funcons are
signi�cantly simpler than constructs of languages such as CinK, and it was pleas-
antly straightforward to specify their K rules. However, we would have preferred
the K con�gurations for combination of funcons to be generated automatically.

Many of the funcons used here for CinK were introduced in the component-
based speci�cation of Caml Light [3], demonstrating their reusability. The names
of the funcons are suggestive of their intended interpretation, so the translation
speci�cation alone should convey a �rst impression of the CinK semantics. Read-
ers are invited to browse the complete K speci�cations of our funcons online, then
compare our translation of CinK to funcons with its direct speci�cation in K [8].

In continuation of this work, we are investigating funcons to specify deferred
side-e�ects and sequence points. We are also aiming to de�ne the static semantics
of funcons in K, so our translation would induce a static semantics for CinK.
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