
Component-Based Dynamic Semantics for
Caml Light

Martin Churchill and Peter D. Mosses

Department of Computer Science, Swansea University

We are exploring scalability of component-based programming language semantics
via case studies. In particular, we translate Caml Light to language-independent
fundamental constructs (funcons), each of which has independent semantics
given by inductive rules. This factorisation provides an accessible semantic
specification of the language, while retaining formal precision. The semantics can
be validated by animating the translation and rules, and running test programs.
Moreover, funcon equivalence laws (bisimulations) can be proved independently;
a recently developed rule format ensures that this is a congruence for all of our
funcons. The funcons used form a basis of a growing repository to be used in
further language specifications. This work forms part of the PLanCompS project
[www.plancomps.org].

1 Fundamental Constructs

Each of our fundamental constructs (funcons) represents a unit of computation:
a token representing a piece of behaviour (either run-time or during static
checking). Each has a particular arity, and may be applied to other funcon terms.
For example, seq allows two computations to be run sequentially, assign updates
the imperative store and deref can examine it, abs abstracts a term over a given
pattern, apply may be used to apply such abstractions, scope scopes a series of
declarations locally to a term, and so on. The collection is open ended, and each
funcon should be reusable in component-based specifications of many languages.

By a translating a language to combinations of funcons, we provide it with a
component-based semantics [5]. This semantics is formal – the semantics of the
language is defined precisely by the translation of the language into funcons and
the semantics of the funcons. The semantics is also accessible to the non-specialist
– the translation is defined perspicuously by a number of simple equations, and
each funcon has an informal description accessible to the non-semanticist. Further,
once the collection of funcons has matured, the non-specialist might even write
language semantics, by translating the language to combinations of funcons which
they only informally understand. Good tool support is required to enable this, e.g.
providing prototyping for the generated languages. Related tools for programming
language semantics include [2,7]; our main novelty is the factorisation via reusable
funcons, maximising scalability and perspicuity.

We illustrate this approach for the language Caml Light [3], comparable to
the core of Standard ML. We first provide a couple of examples of translations
from programming language constructs (productions in the context-free grammar

http://www.plancomps.org

2 Martin Churchill and Peter D. Mosses

for Caml Light) to funcons. In the first example, we translate Caml Light’s while
loop using the while true funcon. Additional funcons are needed to specify, for
example, that the final result is the empty tuple (unit):

expr[[while E1 do E2 done]] =

seq(while_true(expr[[E1]], effect(expr[[E2]])),

tuple_empty)

We next consider a translation of Caml Light’s pattern matching, correspond-
ing to the following production of the context-free grammar:

expr : ... | match expr with simple-matching | ...

In this case, the analysis decomposes this into an application of an abstraction
to a matched expression . The abstraction is derived from the semantics of the
simple-matching using a function abs[[]] defined elsewhere in the semantics
(see Section 3). The semantics of match must also take into account what happens
when the pattern fails to match the given value:

expr[[match E with SM]] =

apply(prefer_over(abs[[SM]], abs(any, throw(’Match_failure’))),

expr[[E]])

Signatures and descriptions of the funcons used above can be found in Fig. 1,
with a larger collection (for full Caml Light) at www.plancomps.org/churchill2013b.

apply(abs,value) : expr Applies an abstraction to a given value
abs(patt,expr) : abs Abstracts an expression over a pattern
any : patt Matches any value and produces no bindings
prefer over(abs,abs) : abs Tries to apply the first abstraction to a given argument,

if undefined tries to apply the second abstraction
assign(var,value) : comm Updates a variable to a given value
deref(var) : expr Computes the value assigned to a variable
effect(expr) : comm Evaluates an expression and discards the result
seq(comm,expr) : expr Runs a command, then evaluates an expression
while true(expr,comm) : comm While an expression evaluates to true, runs a command
throw(exception) : expr Throws the given exception

Fig. 1. Some funcon signatures and descriptions

2 Operational Specification of Funcons

We specify the semantics of each funcon independently using inductive SOS-style
operational rules. The behaviour of various funcons may interact in effectful
ways, and such effects are recorded in ‘auxiliary entities’. Examples include the
environment env, the store store, an exception tag exception. Crucially, each
funcon specification only mentions the entities relevant for that particular funcon,
and the other entities are propagated according to the mechanics of Modular

http://www.plancomps.org/churchill2013b

Component-Based Dynamic Semantics for Caml Light 3

E1 → E1 ′

assign(E1 ,E2) → assign(E1 ′,E2)
(1)

E2 → E2 ′

assign(E1 ,E2) → assign(E1 ,E2 ′)
(2)

(assign(Var ,Value), store Store) → (skip, store map update(Store,Var ,Value)) (3)

Fig. 2. Operational rules for assign

SOS [4]. Our concrete notation is based upon I-MSOS [6]. Rules for the assign
funcon are given in Fig. 2.

Here, rules (1) and (2) are ‘patience rules’ and are in fact generated auto-
matically from the signature of assign. The declared signature assign(var,value) :
comm is extended to assign(expr,expr) : comm by generalising value arguments to
computation arguments. Such arguments are evaluated in an unspecified, possibly
interleaved, order.

If one wished to specify left-to-right evaluation, one could use ‘seq assign’
instead. Here, ‘seq’ is an example of a second-order funcon, which takes a funcon as
a special parameter. Another example used in our Caml Light semantics is invert: if
F is a binary data constructor then the pattern invert F (Patt1 ,Patt2) will match
precisely those values of the form F (Value1 ,Value2) where Value1 matches
Patt1 and Value2 matches Patt2 . Second-order funcons are given behaviour via
operational rules in the usual way, and enhance the scalability of our approach.

Other than (modular) SOS, one could give formal semantics to funcons in
other ways, e.g. using frameworks such as [2,7]. The crucial point is that each
funcon must have independent semantics which can be directly reused, so funcons
need only be added when scaling up to larger languages.

3 Caml Light Semantics

Using these techniques, we have translated the Caml Light language [3] into fun-
cons, producing a component-based semantics of the language. This submission
focuses on the dynamic aspects, but the techniques naturally extend to static
aspects, where each funcon is assigned static rules (type checking, evaluation of
type expressions, compile-time resolution of terms). The complete semantics is
given by 13 translation functions, 98 equations and 40 funcons (plus data opera-
tions) together with their rules. Each translation function maps a nonterminal
in the Caml Light reference grammar [3] to funcons of a particular sort, with
functions typically named by the sort that they produce. The main funcon sorts
and translation equation signatures are given in Fig. 3.

For Caml Light, the value sort contains ground values (integers, Booleans,
strings, floats, chars) as well as records (maps, wrapped in a data constructor),
variants for disjoint unions (a value tagged with a constructor) and functions
(an abstraction wrapped with a constructor to form a value). The language
specification also defines initial bindings caml light library : env. The complete
semantic translation can be found at www.plancomps.org/churchill2013b.

http://www.plancomps.org/churchill2013b

4 Martin Churchill and Peter D. Mosses

abs[[]] : simple-matching → abs An abs computes a value given a value
decl[[]] : let-bindings → decl An decl computes an env
expr[[]] : expr → expr An expr computes a value
patt[[]] : pattern → patt A patt computes an env given a value
value[[]] : value → value See prose for value description

Fig. 3. Some translations and funcon sorts

4 Validation

As well as funcon semantics being both easy to read and write, they also facilitate
prototyping. In particular, the semantic equations can be implemented by simple
term rewriting systems; and the funcon operational rules may be animated.
The case study demonstrated here has been validated using the ASF+SDF
MetaEnvironment for the former and by generating Prolog code for the latter.
This way, we have been able to take Caml Light programs and run them according
to the semantics. At the above URL, one may find a sequence of example programs
together with the corresponding funcon term translation, and the output produced
by animating the rules (the final result and the MSOS composed trace of the
auxiliary entities). Thus we can test our semantics: an agile and light weight
alternative to proving properties during language engineering.

Funcons may also be validated by proving equivalence laws. Each of the
funcons used in the Caml Light semantics is in the MSOS tyft format which
ensures that bisimulation is a congruence [1]. This means that each bisimulation
between funcon terms (e.g. associativity of sequencing) is valid in arbitrary Caml
Light contexts. We have found that proofs of bisimulation are well-suited to
formalisation in theorem provers, and they may be stored in the envisioned repos-
itory with the relevant programs. This would provide a repository of constructs
with tested semantics and proven laws, for use in future language specifications.

References

1. M. Churchill and P. D. Mosses. Modular bisimulation theory for computations and
values. In FoSSaCS 2013, volume 7794 of LNCS, pages 97–112. Springer, 2013.

2. M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex.
The MIT Press, 1st edition, 2009.

3. X. Leroy. The Caml Light system, documentation and user’s guide. http://caml.

inria.fr/pub/docs/manual-caml-light/, 1997.
4. P. D. Mosses. Modular structural operational semantics. J. Log. Algebr. Program.,

60-61:195–228, 2004.
5. P. D. Mosses. Component-based semantics. In SAVCBS ’09, pages 3–10. ACM,

2009.
6. P. D. Mosses and M. J. New. Implicit propagation in structural operational semantics.

In SOS ’08, Electr. Notes Theor. Comput. Sci., Vol. 229(4), pages 49–66. Elsevier,
2009.

7. G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

http://caml.inria.fr/pub/docs/manual-caml-light/
http://caml.inria.fr/pub/docs/manual-caml-light/

	Component-Based Dynamic Semantics for Caml Light

