Modular Bisimulation Theory
for Computations and Values

Martin Churchill and Peter D. Mosses
{m.d.churchill,p.d.mosses}@swansea.ac.uk

Department of Computer Science, Swansea University, Swansea, UK

Abstract. For structural operational semantics (SOS) of process alge-
bras, various notions of bisimulation have been studied, together with
rule formats ensuring that bisimilarity is a congruence. For programming
languages, however, SOS generally involves auxiliary entities (e.g. stores)
and computed values, and the standard bisimulation and rule formats
are not directly applicable.

Here, we first introduce a notion of bisimulation based on the distinction
between computations and values, with a corresponding liberal congruence
format. We then provide metatheory for a modular variant of SOS (MSOS)
which provides a systematic treatment of auxiliary entities. This is based
on a higher order form of bisimulation, and we formulate an appropriate
congruence format. Finally, we show how algebraic laws can be proved
sound for bisimulation with reference only to the (M)SOS rules defining
the programming constructs involved in them. Such laws remain sound
for languages that involve further constructs.

Keywords: structural operational semantics, programming languages,
congruence formats, Modular SOS, higher-order bisimulation.

1 Introduction

Background. Structural operational semantics (SOS) [16] is a well-established
framework for specifying computational behaviour, where the behaviour of pro-
grams is modelled by labelled transition systems, defined inductively by axioms
and inference rules. The metatheory of SOS provides various notions of bisimula-
tion [7/I5] for proving behavioural equivalence. Bisimilarity is guaranteed to be a
congruence when the rules used to define transition relations are restricted to
particular formats, e.g. tyft/tyxt [3].

SOS is particularly suitable for specifying process calculi such as CCS: the
states of the transition system are simply (closed) process terms, and the labels
on transitions represent actions corresponding to steps of process execution. For
programming languages, however, transition relations often involve auxiliary enti-
ties as arguments, e.g. stores (recording the values of imperative variables before
and after transitions) and environments (determining the bindings of currently
visible identifiers); they also use terminal states to represent computed values.

2 M. Churchill, P. D. Mosses

These extra features entail that rules do not conform to the usual congruence
formats.

The need to specify auxiliary entities in SOS rules also undermines their
modularity, which can be a significant pragmatic problem for larger languages.
Modular SOS (MSOS) [§] is a simple variant of SOS where auxiliary entities are
incorporated in labels. The notation used for label terms in MSOS eliminates
references to stores and environments (etc.) in most rules. MSOS provides
foundations for the component-based approach to semantics [9] currently being
developed by the PLanCompS project (www.plancomps.org).

Contribution. In this paper, we introduce a notion of bisimulation for MSOS and a
corresponding congruence format supporting auxiliary entities and computations
(processes) which compute values. This work stands on the shoulders of previous
work on congruence formats used for the SOS of process calculi, but develops it
in a direction more suitable for use with programming languages.

Our notion of bisimulation is higher-order, and tailored for use with MSOS;
in particular, so-called writeable label components (e.g. the resulting store, or
a thrown exception) may vary up to the bisimulation relation in the ‘step’. We
provide an appropriate rule format — an enhancement of the well-studied #yft
format [3] — which ensures that bisimilarity is a congruence.

In our setting, there is a strict dichotomy between value terms (which may
be inspected) and more general computational terms (which may be run, and
their behaviour observed) following e.g. [6]. In particular, the treatment of values
is disciplined with fixed built-in rules, and our definition of bisimilarity ensures
that bisimilar values have bisimilar subterms. We use silent rewrites to deal with
operations on values. This mechanism also allows unit laws to hold for our notion
of bisimulation, avoiding the need for weak versions of bisimulation.

MSOS rules for a particular construct need only mention the auxiliary en-
tities relevant to that construct, allowing modular specifications. We describe
a complementary notion of modular bisimulation, allowing laws to be shown
just with respect to the rules relevant to the particular constructs mentioned
in that law. This notion of bisimulation identifies when a law is robust and
cannot be broken by the presence or absence of other constructs that might be
in the language. Thus, we can specify the operational semantics of programming
languages incrementally, proving laws which remain valid (and a congruence) as
the language is extended.

Related work. There has been a variety of work on notions of bisimulation and
congruence formats, reviewed in [I4]. No formats in this review, or any other we
are aware of, allow value terms as arguments in the source of the conclusion.

Our notion of higher-order bisimulation for MSOS generalises stateless bisim-
ulation from [I3] (but we allow information flow between the data and process
components). Like the higher-order PANTH format of [12], labels may vary up to
bisimulation in the step. However, the distinction between readable and writeable
MSOS label components admits a much simpler rule format.

http://www.plancomps.org

Modular Bisimulation Theory for Computations and Values 3

We can also compare it to applicative bisimulation [4], in which bisimilar
abstractions must yield bisimilar outputs for bisimilar inputs. In our framework,
bindings and abstractions can be dealt with using an environment, which is ‘just
another auxiliary entity’ and treated as such. Our notion of bisimulation does
not explicitly require that bisimilar environments yield bisimilar computation
results, but in fact this is a consequence of our rule format.

Outline. The rest of this paper is arranged as follows: In Sect. [2| we introduce a
notion of bisimulation and congruence format focusing on the distinction between
values and computations. In Sects. [3] and [we lift our notion of bisimulation
to the higher-order setting of MSOS, and define a liberal congruence format for
bisimulation in MSOS. In Sect. [5] we discuss how we can formulate and prove
robust bisimulations, which continue to hold as additional constructs are added
to the language. In Sect. [f] we consider further directions. Full proofs of results
in this paper are available at http://www.plancomps.org/churchill2013a/|

2 Value-Computation Bisimulation

Structural operational semantics uses terms over a first-order algebraic signature
as the states and labels of a transition system. A key distinction at the heart
of our notions of equivalence is between computational terms and value terms.
Values consist of structure that can be interrogated, while computational terms
generally have behaviour. An appropriate slogan from [6] is that values are,
while computations do. Examples of values include Booleans, integers, and closed
function abstractions. Computations model the potential behaviour of expressions,
statements, declarations, processes and entire programs. This distinction is
important in programming languages, c.f. call-by-name vs. call-by-value in Algol
or Scala, corresponding to whether functions take computations or values as
parameters.

From the point of view of program (term) equivalence, the distinction is also
important. In particular, equivalences must be sound with respect to observational
tests (contexts). Contexts, as with programs in general, must be able to interrogate
values — for example, true must be distinguishable from false. On the other hand,
it must not be possible for a program to be able to interrogate the structure of a
computational term such as ‘if true then C else D’, for then it could distinguish
it from C' and equivalence would reduce to syntactic identity. Thus, only values
may be interrogated. But note that values may also contain computational terms
as subexpressions. For example, a function value may also contain a body (a
computational term) and a closing environment (a value term, which may include
computations as substructure).

In this section we formalise this distinction and the corresponding notion of
equivalence, and define a simple bisimulation congruence format.

http://www.plancomps.org/churchill2013a/

4 M. Churchill, P. D. Mosses

2.1 Value-Computation Transition Systems

The terms we consider are freely generated from an algebraic signature. Rather
than quotienting by an equational congruence, we equip our systems with a
rewriting relation =. This represents internal silent functional transitions. Unlike
a transition under a distinguished silent label 7, = is context insensitive (a
precongruence). This can be used to avoid polluting traces with silent steps
— a goal shared by Plotkin in [16] — and it allows unit laws to hold up to
strong bisimulation. Rules can also be kept simple — for example, we can define
s> s’
seq(s,t)#seq(s/,t)
successful termination of a command. The relation = is asymmetric, and we
intend that the RHS is simpler than the LHS — this keeps the search space small
in bisimulation proofs and animation.
Our notion of value is derived from that of a value constructor, as in [4].

sequencing using and seq(skip,s) = s where skip represents

Definition 1 (value-computation signature). A value-computation signa-
ture X consists of a set of constructors Cx (function symbols — f,g,...), each
with an arity ary, : Cs, — N, and a set of value constructors VCyx C Cx. We
let T; denote the set of (closed) terms (s,t,...), and Vs C T the set of value
terms whose outermost constructor is in VC'x.

A precongruence with respect to X is a reflexive transitive relation R such that
if f e Cx with ar(f) = nand s; Rt; for 1 < i < n then f(s1,...,8,) R
f(t1,...,t,). For symmetric relations, we may also call such an R a congruence.

Definition 2 (value-computation transition system). A value-computation
transition system is a tuple (X, L, —, =) where X is a value-computation signa-
ture, L a set of labels, — C T's; x L x T’s; a transition relation and = C Tx, x T’
a rewriting relation such that:

— = 1S a precongruence

—sh implies s ¢ Vx (value terms have no computational behaviour)
— s= 8 with s =v(s1,...,8,) forv € VCyx implies s’ = v(s),...,s),) with
s; = s} for 1 <i <n (rewriting preserves value constructors)

1 ! .
— If s= s1, 81 — $2 and s2 = s’ then s = s’ (saturation).

A term made entirely out of value constructors is a ground value. Ground
values are just as they appear: pure syntactic values, which can be constructed
and inspected. The meaning of computational terms in Ts; — V5, is determined
by the — and = relations, representing their behaviour. Non-ground values can
be deconstructed to yield computational terms, which may have behaviour.

A value-computation transition system will typically be specified by a set of
inductive rules. If X is a value-computation signature, let OT 5, denote the set
of open X-terms, constructed inductively from term variables (z,y,...), value
variables (v1,va,...) and constructors in C.

Modular Bisimulation Theory for Computations and Values 5

Definition 3 (value-computation specification). A value-computation spec-
ification consists of a tuple (X, L, D) where X is a value-computation signa-

ture, L a label set, and D a set of rules over formulas f(s1,...,5n) Los or
f(s1,.-.,8,) = & with s;,8 € OTx and f ¢ VC. These rules generate a
transition system over Tx, and L inductively, after being extended with rules
for reflexivity, precongruence, transitivity and saturation (below), where value
variables range over value terms.

T1 = Y1 e Tn = Yn

e f(wlw‘-ayn):>f(l'1,...,yn) fGCE,arg(f):n

l
=Yy Y=z T = I Ty — Y1 Y1 =Y
T =z

x b Yy
Each such specification generates a value-computation transition system.

Ezample 4. We consider a value-computation system of basic constructs. The
signature X' contains binary sequencing seq; a ternary conditional cond; nullary
constants true, false and skip; operations print; for [€ {a,b}; and unary operations
thunk for wrapping computations as values, and force for forcing evaluation of
a thunk. The value constructors are true, false, skip, and thunk. For labels,
L = {a,b}. The rules are given in Fig.

x5 (1) o (6)
1 1 ’
cond(x, y1,y2) EN cond(z’, y1,y2) seq(z,y) — seq(z’,y)
cond(true, y1,y2) = y1 (2) seq(skip,y) =y (7)
cond(false, y1,y2) = v2 (3) LN .
l ’
force(x) — force(x
print, = skip (4) () (")
print, 2 skip (5) force(thunk(z)) = = (9)

Fig. 1. Operational rules for Example []

We next introduce our notion of equivalence for value-computation transition
systems. This consists of extending the usual bisimulation step condition with
two further cases dealing with rewriting and values. For example, if two values
are bisimilar, the outermost value constructor must be the same (up to rewriting),
and the arguments pointwise bisimilar.

Definition 5 (value-computation bisimulation). A value-computation bisim-
ulation (or ve-bisimulation) over a given value-computation transition system
(X,L,—,=) is a symmetric relation R C Tx, x T such that

6 M. Churchill, P. D. Mosses

1. If sRt and s % s’ then 3’ with s' Rt and t 5 ¢'.

2. If s Rt and s = s’ then 3t' with s’ Rt' andt =t

3. If v(s1,...,8,) Rt withv € VC, then t = v(t1,...,t,) with s; R t; for
1 <1< n.

Two terms s and t are value-computation bisimilar, written s =, t, if there
exists a value-computation bisimulation R with s R t.

In Example for any terms s, ¢, r we have seq(seq(s, t),r) =, seq(s,seq(t,r)),
and also thunk(seq(seq(s,t),r)) =y thunk(seq(s,seq(t,r))). The use of rewrites
= also allows us to prove unit laws up to bisimulation, which usually only hold
up to weak bisimulation: for example, seq(skip, s) &y S.

2.2 Congruence Format

We next define a format guaranteeing that value-computation bisimilarity is a
congruence.

Definition 6 (pattern). A pattern is a term constructed inductively from
variables and value constructors such that each variable appears at most once.

Definition 7 (value-added tyft). A rule is in the value-added tyft format if
it is of the following shape, where each ~, ~; may be = or = for some a.

{siwiui:iel}

flwr, ... wy) ~t

Here, t, s; range over arbitrary open terms; and u;, w; over patterns. Further, each
variable may occur in at most one of u; or w;. A value-computation specification
is in the value-added tyft format if all of its rules are.

By inspecting Fig. [I we see that Example [is in the value-added tyft
format. The restriction of certain subterms to patterns ensures that only value
constructors may be inspected. To see that this is necessary for congruence,
consider any instance of seq(seq(print,,t),r) a2, seq(print,,seq(t,r)). Then w;
must be a pattern, as otherwise f defined by f(seq(seq(x,y), z)) = true provides
a distinguishing context. Each u; must be a pattern, as otherwise f defined
b w#seq(siq(w’y)@)

f(z)—>true
variables as otherwise g(z,z) = true, f(x) = g(z, seq(seq(print,,t),r)) provides
a distinguishing context.

The above format is built on the tyft format of [3], generalised so that u;, w;
may range over patterns rather than just variables. In loc. cit., tyzt rules are also
allowed, where the source of the conclusion is just a variable. We have excluded
this here just to ensure that values do not perform computational steps; if this is
otherwise guaranteed then tyzt rules may be added with congruence intact.

provides a distinguishing context. We require uniqueness of

Modular Bisimulation Theory for Computations and Values 7

We next show that the value-added tyft format ensures that bisimilarity is
a congruence. To show our congruence result, we assume that rules are well-
founded: that is, the premises of each rule can be ordered such that variables in
the conclusion of a premise appear in no earlier premise. This restriction was also
required for the tyft/tyzt congruence proof in [3]. It was later shown unnecessary
via a translation in [2]; such a translation should be possible for this result also.

If o is a partial mapping from variables to terms, we write s[o] for the
substitution replacing each o-defined variable x in s by o(z). If s is an open
term, we write vars(s) for the variables occurring in s. The reflexive congruence
closure of a relation R is the least reflexive relation containing R such that
s1 Rty,..., 8, Rt, implies f(s1,...,8,) R f(t1,...,tn).

Lemma 8. Let r be a pattern and o a substitution with dom(o) = vars(r).
Let R’ denote the reflexive congruence closure of a vc-bisimulation R and let
rlo] R’ t. Then exists T with dom(7) = vars(r) such that t = r[r] and for each x,
o(xz) R 7(x).

Theorem 9. If all rules in a value-computation transition system are defined in
the value-added tyft format and well-founded, then vc-bisimilarity in that system
1S a congruence.

Proof. Let R be a ve-bisimulation, and let R’ denote the reflexive congruence
closure of R. We will show that R’ is also a ve-bisimulation, and since R’ contains
R we can conclude that ve-bisimilarity is a congruence. To show that R is a
ve-bisimulation, we show the three conditions in Definition [5] Conditions 1 and 2
are shown simultaneously, showing that s ~» s’ and s R’ t implies there exists ¢’
with ¢ ~» t' with s’ R’ ¢’ for any ~~ of the form = or . The proof proceeds by
induction on the derivation of s ~ s’ making use of the known rule shape, together
with Lemma [§] for patterns in the targets of premises and source of conclusion.
Condition 3 follows immediately from Lemma |8 If s = v(sy,...,s,) Rt then
s = rlo] where r = v(21,...,2,) and 0 = {z; — s;}. By the lemma, t = r[7]
with 7 = {z; — t;} and s; R’ ¢;. Then ¢t = v(¢1,...,t,) as required. O

3 Modular SOS

In this section, we first recall the differences between Modular SOS (MSOS) [§]
and the original SOS framework [16], explaining how MSOS incorporates auxiliary
entities in labels. We then enrich the MSOS specifications of [8] with the notion
of value, and illustrate our framework by specifying rules for various constructs.

3.1 MSOS Labels

In SOS (and in the value-computation specifications introduced in Sect. [2)) the
set of labels can be chosen arbitrarily. In practice, however, when specifying the
semantics of concurrent or reactive processes, labels usually represent emitted
signals or events; and when specifying sequential programming languages, they

8 M. Churchill, P. D. Mosses

are often not used at all. Any auxiliary entities, such as environments (p) and
stores (o), are incorporated as sub-terms of states, together with the usual process
terms. For example, a state might be a triple (s, p, O’)H

MSOS differs from SOS by incorporating auxiliary entities in labels, instead
of in states. Thus states are simply process terms (including computed values).
Moreover, the set of labels forms a category (with the labels as the morphisms)
and the labels on successive transitions have to be composable. The constraint of
composability is crucial: for instance, it ensures that the environment in the label
does not change between adjacent transitions, and that changes to the store are
single-threaded. There is also a notion of unobservable label, corresponding to
identity morphisms.

Since the various auxiliary entities are (in principle) independent, the label
category is obtained as a product of a component category for each auxiliary entity.
Following [8] we use indexed products, and write a label using ML-style record
value notation as ‘{i; = t1,...,%, = t,} (the order in which the components are
listed is insignificant).

Three simple kinds of label component category, identified in [8], are sufficient
to ensure that MSOS is at least as expressive as SOS:

— Read-only (RO): label components are composable only when identical, and
always unobservable.

— Write-only (WO): label components are always composable, and there is a
unique unobservable entity corresponding to an identity morphism.

— Read-write (RW): label components are pairs of entities, (x, z’) is composable
with (y,y’) iff 2’ and y are identical, and (z,z’) is unobservable iff and 2’
are identical.

For notational convenience we write labels using an unprimed index for each
read-only component (e.g. env=p), a primed index for each write-only component
(e.g. output’=0), and both an unprimed and a primed index for the two entities
of each read-write component (e.g. store=0y, store’=c). Formally:

Definition 10 (MSOS labels). A label profile is a triple of disjoint sets L =
(Lro, Lrw,Lwo). The set reads(L) consists of the unprimed elements x € LroW
Lrw. The set writes(L) consists of the primed elements {x': x € Lyyo W Lrw }.
For any set T, the label set L(T) is the set of maps reads(L) W writes(L) — T.
For a label L € L(T'), we write reads(L) and writes(L) for the restriction of L to
reads(L) and writes(L) respectively.

We intend to instantiate T with a set of terms — for example, we can represent
stores and environments as terms by using applicative lists. Accordingly, we will
use g, p, ... as additional term variables.

3.2 MSOS Specifications

An MSOS specification with respect to a label profile £ and set of terms T' gen-
erates a transition system specification with states in 7' and labels in £(T'). Such

! Transitions which do not change p are usually written p - (s,0) — (s',0").

Modular Bisimulation Theory for Computations and Values 9

specifications typically only mention a relevant subset of the label components,
treating ellipses ‘...” as variables ranging over the remaining components, which
may be propagated between premises and conclusion. A dash ‘—’ indicates that
the rest of the label L is unobservable: concretely, if x € Lz then L(x') = L(x)
and if x € Ly then L(x') = 1x where 1y is a distinguished nullary constant
associated to x.

Rules may combine labels using composition (o). A pair of labels (L, Lo) is
composable if for x € Lro, L1(x) = La(x) and for x € Lrw, L1(x) = L2(x).
Given a composable pair (L, La) the composition Ly o Ly is defined to be:

— For x € Lo, (L2 0 L1)(x) = L1(x) = La(x).

— Forx € Lo, (LaoL1)(x') = Ox(L1(x), L2(x')) where O is a distinguished
binary constructor associated to x. Typically, (®x, tx) will form a monoid on
a subset of the terms.

— For x € Lrw, (Lao L1)(x) = L1(x) and (Lg o L1)(x') = La(X').

In rules, we use label variables (I, *...”). In a given rule, each label must have
the same set of explicitly mentioned label components E. Labels in that rule
then consist of a map ' — OT x5, denoted by a list of equations, followed by a

composition (sequence) of label variables (the empty sequence is denoted ‘—’,
representing an unobservable label).

Definition 11 (MSOS specification). An MSOS specification consists of a
tuple (L, X, D, M) where L is a label profile, X a value-computation signature,

and D is a set of rules over formulas f(s1,...,Sn) L s or f(s1,...,8,) = ¢
with s;,s € OTs, f & VCyx with labels as immediately above. Finally, M
specifies for each x € Lwo a nullary vx € Cx; and binary ©x € Cx. There are
built-in rules for reflexivity, precongruence, transitivity and saturation, consisting
of those in Definition[3 in addition to:

{x=z2,...} / {x/:l‘v“-} /
T =z y ———t y ———1 T =z
y e y =z

An MSOS specification generates a value-computation transition system over
L(Tx) inductively after being extended with the built-in rules, where value vari-
ables range over value terms. Unobservability, composability and composition are
interpreted as described above.

Ezxzample 12. In Fig. we give some example constructors and their MSOS
rules. The label profile includes read-only env, write-only exc and output, and
read-writeable store. We include all constructors and rules from Example [4]
except for print, which has been generalised.

We add value constructors for maps (ternary update, nullary empty), lists
(binary cons, nullary nil) and function values (ternary abs). The value abs(z, s, p)
denotes a closed function, with formal parameter z, body s, and closing envi-
ronment p. We include a set of nullary values I = {x,y,...} for identifiers and
imperative variables.

10 M. Churchill, P. D. Mosses

bound(x) donv=pd, lookup(p, x) (10)

(.}

% /
let(z,y,t) REDN let(z,y’,t)
{env=update(p,z,v),... } ’
— (12)
let(z, v, y) donv=p.d, let(z,v,y’)
let(z, v1,v2) = v2 (13)
throw(x) foxe =cons(wnl). 7H tuck (14)
{exc’=nil,...} !
catch(z, 2) foxe =nl,. .} catch(a’, 2)
(15)
{exc’=cons(y,nil),...} ’
—
{exc’=nil,...}
catch(z, z) apply(z,y)
(16)
catch(v, z) = v (17)
{store = o,
. store’ = update(o, z,v), —} i
assign(z, v) skip
(18)
{3}
=
Y L (19)

assign(z, y) REDN assign(z,y’)

{store=o,

deref(z) - lookup(a,z) (20)

) {output’=cons(z,nil),—} Sklp
(21)

print(x

- {1 2

.}
apply(z,y) —— apply(z’,)

y {3 Y

1.3}
apply(v,y) — apply(v,y’)

{env=update(p,z,v),...} ’

Y

(22)

(23)

apply(abs(z, y, p), v)
apply(abs(z,y’, p), v)

app|Y(abs(‘r7 U1, p)7 UQ) = vl

{env=pq,...}
_—

(24)

(25)

lambda(z, 3) donv=p b, abs(z,y, p)
(26)
B ato;ni(l:(m/) 2 v (27)
atomic(z) =% v
atomic(v) e (28)
append(cons(z,y), z) = (29)
cons(z, append(y, z))
append(nil, z) = z (30)
look ,J) =
UP(MJ)‘ vt itiel
lookup(update(y,4,v),7) = v1
(31)
el
lookup(update(p, i,v),i) = v '
(32)

Fig. 2. Operational rules for Example

Modular Bisimulation Theory for Computations and Values 11

Additional computational constructors include static bindings (let and bound),
volatile store (assign and deref), functions (lambda and apply) and exceptions
(throw and catch). The term let(z, s,t) binds x to s in t.

We include binary operations lookup and append for maps and lists respectively.
Note that lookup(empty, x) is a stuck computational term — this is an example of
how undefinedness can be handled in our setting.

We also include an atomic constructor. The computation atomic(s) runs s
and combines the trace into a single transition. This can be used to block the
context interrupting the trace, e.g. by catching a thrown exception. Note that
the first rule for atomic only applies when (I1,l2) is a composable pair.

We set loutput = lexc = nil and ®0utput = Oexc = aPPend-

The notational burden of heavily loaded arrows can be avoided by writing
the MSOS rules using conventional SOS notation, following techniques in [I1].

4 Bisimulation Metatheory for MSOS

We next revisit our goal of ensuring that bisimilarity is a congruence, this time
in the MSOS setting. Even though we still generate value-computation transition
systems, the value-added tyft format is of limited use, since it does not allow
information flow between labels and other computational terms in rules (this is
needed in Example (12| for e.g. Rule for let). Note that we cannot allow such
flow arbitrarily: if s; & so is to imply let(x, s1,t) ~ let(x, s2,t) then ¢ can only
test the env label component up to pointwise bisimilarity.

4.1 Bisimulation in MSOS

We next generalise ve-bisimulation to a higher-order version for the MSOS
setting. In particular, in the step writeable label components may themselves
vary up to bisimulation. This is required, for example, so that s =~ t implies
assign(x, s) = assign(x, t). Given a relation R, for maps o and 7 we write 0 R 7
just if dom(o) = dom(7) and for each © € dom(c), o(x) R 7(x).

Definition 13 (MSOS bisimulation). Given a value-computation transition
system (X, L(Tx;), —, =) generated from an MSOS specification, an MSOS bisim-
ulation is a symmetric relation R C T, X T's; such that:

1. IfsRt and s Ly then 3, L' with s R, t , t’, reads(L’) = reads(L)
and writes(L) R writes(L’).

2. If sRt and s = s’ then 3t with s’ Rt and t = t'.

3. If v(s1,...,8n) Rt withv € VCx, then t = v(t1,...,t,) with s; R t; for
1 <4 <n.

Two terms s and t are MSOS bisimilar, written s 05 t, if there exists an
MSOS bisimulation R with s R t.

12 M. Churchill, P. D. Mosses

In MSOS rules, usually only a few label components are mentioned explicitly,
while in the above definition all label components are mentioned. However, in
any particular bisimulation proof, one can set L'(i) = L(i) for unmentioned i.
Since ve-bisimulations are also MSOS bisimulations, the associativity and
unit laws for seq hold up to MSOS bisimilarity in Example We can also show
catch(print(v),) Rmsos print(v), for example. We may seek to prove laws for
state such as seq(assign(x, v), deref(x)) =505 seq(assign(x, v), v). However, this
law is not sound with respect to arbitrary contexts. In particular, C[s] may
run one step of computation of s and then roll back the store before continuing.
Instead, we may prove a modified law which blocks interruption of the trace:

atomic(seq(assign(x, v), deref(x))) ~ms0s atomic(seq(assign(x, v),v)).

4.2 Congruence Format

We now present a rule format which ensures that MSOS bisimilarity is a congru-
ence. We will need to consider the substructure of labels in rules.

Definition 14 (well-founded MSOS tyft). A rule is in the well-founded
MSOS tyft format if it has the following form:

{siwiui:iEI}

flwr,...;wy) ~t

where premises are ordered and:

— t, s; range over arbitrary open terms and u;,w; over patterns.

— ~; 15 either = or Liy where L; consists of a sequence of equations {l =t ;}
possibly followed by a label variable. Further, if | is primed then t;; must be
a pattern.

— ~ is either = or i>, where L consists of a sequence of equations {l = t;}
possibly followed by a composition of label variables. Each such label variable
must occur in the premise. If label variable X is to the left of label variable
Y in the composition, Y must occur in an earlier premise than X. Further,
if 1 is unprimed then t; is a pattern.

— The set of variables must be disjoint for u;, wj, t; for primed I, t; for
unprimed 1. Variables in u; or t;; for primed | must not appear in an earlier
premise.

An MSOS specification is in the well-founded MSOS tyft format just if all its
rules are.

This follows a discipline of information flow from readable components in the
conclusion to readable components in the premise, to writeable components in
the premise to writeable components in the conclusion. Writeable components
(t1; and ¢; for primed [) are treated like additional targets, and readable com-
ponents (¢;,; and t; for unprimed) like additional sources. To see why each ¢

Modular Bisimulation Theory for Computations and Values 13

) . —update(y,x,thunk ,
must be a pattern for unprimed [, consider g {env=update(y x thunk(sea(z,w)))} true,

f(y) = let(x,thunk(y),g) and note that f provides a distinguishing context for
seq(skip, print(true)) R,s0s print(true). To see why each ¢; ; must be a pattern for

{exn’=cons(seq(z,w),nil),...}

throw() Y provides a distinguishing

primed [, note that

{exn’=nil,...}

f(z) ———>true
context for the same equation. The same examples given in Sect. 2.2 show why

the u;, w; must be patterns and why variables may not be shared.

Note that in this format composition expressions and unobservable labels
may only occur in the conclusion of a rule. The restriction on ordering of label
variables in the conclusion ensures that when composition is made explicit, the
pattern restrictions above are satisfied.

The distinction between readable and writeable label components is related
to label arguments in [I] and the notion of volatility from [I2]. In each, certain
terms in the label are restricted to be a generalised notion of fresh variable and
replacement of bisimilar terms in this component will lead to bisimilar outputs.

By inspection of Figs. [T] and 2] we see that Example [12]is in MSOS tyft format
(we view the rules for lookup as a family of rules indexed over I). In the rest of
this section we will show that for systems with rules in the well-founded MSOS
tyft format, MSOS bisimilarity is a congruence.

Definition 15 (explicit MSOS tyft). An MSOS specification is in explicit
MSOS tyft format if it is in the well-founded MSOS tyft format and contains no
label variables.

Proposition 16. Each well-founded MSOS tyft system is equivalent to one in
the explicit MSOS tyft format.

Given an MSOS transition system 7" over label profile £ we produce an equivalent
set of rules removing all uses of label variables, exhibiting all information flow
in labels explicitly following the definitions in Sect. [3] We only give an example.
The rules for the atomic constructor are translated as follows:

A : A
s 8 atomic(s’) == v

3 atomic(v) £ v
atomic(s) = v

where

A1 = {env = p, store = 01, store’ = o5, output’ = ay, exc’ =7}
A2 = {env = p, store = 09, store’ = o3, output’ = ay, exc’ =72}
A = {env = p, store = 01, store’ = o3, output’ = append(ay, az),
exc’ = append(n1,72)}

u = {env = p, store = o, store’ = o, output’ = nil, exc’ = nil}

Proposition 17. Consider an MSOS specification in explicit MSOS tyft format.
Let R be an MSOS bisimulation over the generated transition system and let R’
denote the reflerive transitive congruence closure of R. Suppose s R’ t. Then:

14 M. Churchill, P. D. Mosses

1. If s = r[o] with dom(c) = vars(r) and r is a pattern then there exists T with
dom(7) = vars(r) such that t = r[r] with o(x) R’ 7(x) for each x € vars(r).

2. If s = s’ and s R’ t then there exists t' witht = t' and s’ R’ .

3. If s L s and reads(L) R’ trs then there exists t', tws such that s R’ t,

writes(L) R’ tws and t Ly for reads(L’) = trs and writes(L') = tws.

Proof. The proof proceeds by simultaneous induction on R’. Condition 1 corre-
sponds to Lemma |8 but must be proved simultaneously due to the fact that we
also close our relation up to transitivity. For Conditions 2 and 3, we perform an
inner induction on the proof of the transition, exploiting the rule format. a

Theorem 18. Consider an MSOS specification T in the well-founded MSOS tyft
format. Let R be an MSOS bisimulation and R’ denote the reflexive transitive
congruence closure of R. Then R’ is an MSOS bisimulation.

Proof. We first convert T into an equivalent system in explicit MSOS tyft format
following Proposition We then show that R’ is an MSOS bisimulation by
considering the three conditions in turn, each of which follows straightforwardly
from Proposition a

Corollary 19. MSOS-bisimilarity is a congruence for specifications in the well-
founded MSOS tyft format.

Proposition [I7] claim 3 ensures that if s 2,505 ¢ then each composable trace from
s can be matched by a corresponding composable trace from ¢, up to bisimilarity
in the subsequent steps and labels. In the case of Example it also has the
following consequence: for any term, (pointwise) bisimilar environments yield
bisimilar outputs. The fact that bisimilarity is a congruence ensures that bisimilar
abstractions yield bisimilar outputs when applied. This is part of the definition
of bisimilar abstractions in applicative bisimulation [4].

5 Modular Bisimulations

Bisimulation examples in this paper were given explicitly with respect to our
example systems. But in fact the proofs did not make use of the particular closed
set of constructors. For example, for seq(skip, s) & s, presence of constructors other
than seq and skip had no influence whatsoever on the proof of bisimulation. The
proof would work just as well in any system with those rules for the constructors
in question; the law and proof are modular in nature. On the other hand, if a
bisimulation proof performs explicit case analysis on all terms or label components,
this is not possible. How can we formalise this distinction?

Given a constructor f, an f-defining rule is a rule where the source of the
conclusion has f as its outermost symbol. A disjoint extension of an MSOS
system (X, £, D) is an MSOS system (X', £', D’) with X/ O X £’ O £ and such
that each rule in D’ — D is f-defining for some f in X’ — 3.

Let S be a subset of the constructors of Example We define S to be
the least set containing S such that for all f in S, any constructor appearing

Modular Bisimulation Theory for Computations and Values 15

in an f-defining rule also appears in S. We define Eg to be the subsystem of
Example [12] restricted to the constructors in S and rules that are f-defining for
some f € S. Given a candidate algebraic law for MSOS, we advocate proving this
law with respect to all disjoint extensions of Eg, where S is the set of constructors
appearing in that law. We isolate the particular subsystem that makes the law
hold, and are guaranteed that any system containing this will validate the law.
For associativity of seq, we show: seq(seq(s,t),7) Rmsos s€q(s,seq(t,r)) in any
disjoint extension of Efeeqy-

We call such statements modular bisimulations. Since the quantification over
extensions is external to the particular notion of bisimulation, meta-results such
as congruence can be used directly. All examples of bisimulations in this paper
can indeed be formulated and proved as modular bisimulations.

If we wish to internalise this notion, we are led to fh-bisimulation [10]. In this
setting, the step conditions must hold in the presence of arbitrary hypotheses, of
the form x = y for variables z, y. More specifically, it is provable ruloids that
must step — a provable ruloid of iF) is a proof of s = s’ which may have open

leaves found in I'. In [I0], it was shown that th-bisimilarity is preserved under
disjoint extensions which preserve the label set for the positive GSOS format. (We
have subsequently generalised this result to arbitrary positive source-dependent
rules.) In future, we hope to adapt these results to our MSOS bisimulation format.

6 Further Directions

We intend to use our framework to give formal semantics, and prove laws about,
real-world programming languages. One reason this has been lacking in the
literature is due to the scalability of the usual techniques, and our use of MSOS
and modular bisimulations help to address these issues. As a start, we are currently
providing dynamic semantics for Caml Light [5] by translating it into the kind
of basic constructors found in Example called funconsﬂ [9]. This includes
higher-order functions, pattern matching, records and variants, mutually recursive
declarations, exceptions and reference cells. Crucially, all rules for constructors
used are in the MSOS tyft format. Thus, if program fragments P and) have
funcon translations P’ and Q' respectively, and P’ and @’ have been proved
equivalent using our techniques, we can conclude that P and () are equivalent
and soundly interchangeable in Caml Light programs.

A possible useful extension of this work would be treatment of multisorted
algebras. In particular, the right unit law for seq only holds if the only value that
left operand could compute to is skip, i.e. it has type unit, or is a command. We
could also consider parametrising bisimulations by the current label components
cf. state-based bisimilarity [13], which would increase the number of equivalences
one could prove. This could be particularly interesting in the MSOS setting,
where labels are both open and higher-order.

Another further direction is to consider rules with negative premises, which we
have avoided here by matching on values. We have also avoided special treatment

2 See http://www.plancomps.org/churchill2013a/

http://www.plancomps.org/churchill2013a/

16

M. Churchill, P. D. Mosses

for variable binders/names, which are handled by the environment. Fresh name
generation is possible using read-write label components.

Acknowledgements. Many thanks to Mohammad Mousavi, Cristian Prisacariu,
Paolo Torrini and the anonymous referees for their useful comments. This work
was supported by an EPSRC grant (EP/1032495/1) to Swansea University in
connection with the PLanCompS project (www.plancomps.org).

References

1.

10.

11.

12.

13.

14.

15.

16.

Bernstein, K.L.: A congruence theorem for structured operational semantics of
higher-order languages. In: 13th Annual IEEE Symposium on Logic in Computer
Science. pp. 153-164. IEEE (1998)

Fokkink, W.: The tyft/tyxt format reduces to tree rules. In: Hagiya, M., Mitchell,
J.C. (eds.) TACS’94. pp. 440-453. LNCS, Vol. 789, Springer, Heidelberg (1994)
Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as
a congruence. Inf. and Comput. 100(2), 202 — 260 (1992)

Howe, D.J.: Equality in lazy computation systems. In: Fourth Annual IEEE Sym-
posium on Logic in Computer Science. pp. 198-203. IEEE (1989)

Leroy, X.: The Caml Light system, documentation and user’s guide. http://caml}
inria.fr/pub/docs/manual-caml-1light/ (1997)

Levy, P.B.: Call-by-push-value: A subsuming paradigm. In: Girard, J.Y. (ed.)
TLCA’99. pp. 228-242. LNCS, Vol. 1581, Springer, Heidelberg (1999)

Milner, R.: A Calculus of Communicating Systems. LNCS, Vol. 92, Springer,
Heidelberg (1980)

Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program.
60-61, 195-228 (2004)

Mosses, P.D.: Component-based semantics. In: Huisman, M. (ed.) Eighth Intl.
Workshop on Specification and Verification of Component-Based Systems. pp. 3-10.
ACM, New York (2009)

Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under opera-
tional extensions. In: Froschle, S., Valencia, F.D. (eds.) 17th International Workshop
on Expressiveness in Concurrency. pp. 106-120. EPTCS, Vol. 41, arXiv (2010)
Mosses, P.D., New, M.J.: Implicit propagation in structural operational seman-
tics. In: Hennessy, M., Klin, B. (eds.) Fifth Workshop on Structural Operational
Semantics. pp. 49-66. Electr. Notes Theor. Comput. Sci., Vol. 229(4), Elsevier,
Amsterdam (2009)

Mousavi, M.R., Gabbay, M., Reniers, M.: SOS for higher order processes. In: Abadi,
M., de Alfaro, L. (eds.) CONCUR 2005. pp. 308-322. LNCS, Vol. 3653, Springer,
Heidelberg (2005)

Mousavi, M.R., Reniers, M.A., Groote, J.F.: Notions of bisimulation and congruence
formats for SOS with data. Inf. and Comput. 200(1), 107 — 147 (2005)

Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3), 238 — 272 (2007)

Park, D.: Concurrency and automata on infinite sequences. In: Proc. 5th GI-
Conference on Theoretical Computer Science. pp. 167-183. Springer, London, UK
(1981

Plotk)in7 G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17-139 (2004), (Originally Tech. Rep. DAIMI FN-19, Dept. of
Computer Science, Univ. Aarhus, 1981)

http://www.plancomps.org
http://caml.inria.fr/pub/docs/manual-caml-light/
http://caml.inria.fr/pub/docs/manual-caml-light/

	Modular Bisimulation Theory for Computations and Values
	Introduction
	Value-Computation Bisimulation
	Value-Computation Transition Systems
	Congruence Format

	Modular SOS
	MSOS Labels
	MSOS Specifications

	Bisimulation Metatheory for MSOS
	Bisimulation in MSOS
	Congruence Format

	Modular Bisimulations
	Further Directions

