
Modular Bisimulation Theory for Computations and Values 23

Appendix B Proofs of Example Bisimulations

Example 26. In Example 4, for any terms s, t, r, seq(seq(s, t), r) ≈vc seq(s, seq(t, r)).

Proof. Let R denote the reflexive symmetric closure of

{(seq(seq(s, t), r), seq(s, seq(t, r)))} ∪ {(seq(seq(s, skip), r), seq(s, r))}.

We claim that R is a vc-bisimulation. We show conditions (1) and (2) by joint
induction on the proof tree.

1. Suppose pRq and p
a−→ p�.

In the case that the final rule was saturation, if p ⇒ p1
a−→ p2 ⇒ p� then by

inductive hypothesis q ⇒ q1 with p1Rq1, so q1
a−→ q2 with p2Rq2 and q2 ⇒ q�

with q�Rq�. By applying the saturation rule, q
a−→ q�, as required.

Otherwise, if p = q then the case holds trivially, setting q� = p�.
Otherwise, suppose p = seq(seq(s, t), r) and q = seq(s, seq(t, r)). Then the
only remaining applicable rule for → is the seq-defining rule for →, we must
have seq(s, t)

a−→ u and p� = seq(u, r). Now consider the proof that seq(s, t)
a−→

u. If the final rule is through saturation, we may proceed inductively as in the
case above. Otherwise, the last rule applied must have been the seq-defining
rule for→ and we must have s

a−→ s� and u = seq(s�, t) so p� = seq(seq(s�, t), r).
Now, since s

a−→ s� we may apply the seq-defining → rule and conclude that
q → seq(s�, seq(t, r)). Setting q� = seq(s�, seq(t, r)) concludes the case, since
then p�Rq�.
Otherwise, suppose p = seq(s, seq(t, r)) and q = seq(seq(s, t), r). Then the
only remaining applicable rule for → is the seq-defining rule for →, we must
have s

a−→ s� and p� = seq(s�, seq(t, r)). Now, we may apply the seq-defining
→ rule and conclude that seq(s, t)

a−→ seq(s�, t) and again to conclude that
q → q� for q� = seq(seq(s�, t), r). But then p�Rq�, and so we are done.
Otherwise, suppose p = seq(seq(s, skip), r) and q = seq(s, r). Then the only
remaining applicable rule for → is the seq-defining rule for →, we must have
seq(s, skip)

a−→ u and p� = seq(u, r). The only possibility is saturation with

seq(s, skip) ⇒ s1
a−→ s�. By induction on the ⇒ derivation it is easy to see

that s1 = s. Now, since s
a−→ s� we may apply the seq-defining → rule and

conclude that q → seq(s�, r). We are done by reflexivity of R.
Finally, suppose p = seq(s, r) and q = seq(seq(s, skip), r). Then the only
remaining applicable rule for → is the seq-defining rule for →, we must have
s

a−→ s� and p� = seq(s�, r). Then seq(s, skip)
a−→ seq(s�, skip) and q

a−→ q� =
seq(seq(s�, skip), r). But then p�Rq�, as required.

2. Suppose pRq and p ⇒ p�.
If the last rule used is the reflexivity rule for ⇒, we have p = p� and we can
take q = q�, as then q ⇒ q� and p�Rq�.
If the last rule used is the transitivity rule for ⇒, we proceed as for the
saturation case for → using the inductive hypothesis.
If the last rule used is for precongruence, then there are a few possibilities.
If p = q then we are done trivially taking q� = p�. If p = seq(seq(s, t), r)



24 Churchill, Mosses

precongruence in the second argument is used, then r ⇒ r� we may take
q� = seq(seq(s, t), r�). Then p�Rq� and q ⇒ q� using precongruence. If pre-
congruence in the first argument is used, then seq(s, t) ⇒ u. If this is due
to reflexivity or transitivity we may proceed by induction as above, and
if it is due to precongruence in s or t we may proceed as in the previous
subcase, mirroring the transition in q. The final possibility is that s = skip
and p� = seq(t, r). In this case q ⇒ q� = seq(t, r) by applying the seq-defining
rule for ⇒. Then p�Rq� by reflexivity of R.
If p = seq(s, seq(t, r)) and precongruence is used with s ⇒ s�, t ⇒ t� or r ⇒ r�

then we can proceed as in the previous case. Finally, if seq(t, r)⇒ u by the
seq-defining ⇒ rule, we have t = skip and u = r and p� = seq(s, r). Then
q ⇒ q by reflexivity, and p�Rq.
If p = seq(s, r) and q = seq(seq(s, skip), r) and precongruence is used with
s ⇒ s� or r ⇒ r� we can proceed as above. If s = skip and p� = r then q ⇒ r
also, and rRr by reflexivity of R. If p = seq(seq(s, skip), r) and q = seq(s, r)
and precongruence is used with s ⇒ s� or r ⇒ r� we can proceed as above. If
s = skip and p� = seq(skip, r) then q ⇒ q and p�Rq by reflexivity.
The final case is that p ⇒ q by a seq-defining ⇒ rule. If p = q then we
are done trivially taking q� = p�. If p = seq(s, seq(t, r)) then we must have
s = skip and p� = seq(t, r) and then q = q� = seq(seq(skip, t), r) ⇒ p�

with p�Rq� by reflexivity. If p = seq(s, r) then s = skip and p = r. Then
q = seq(seq(s, skip), r) ⇒ r using precongruence, transitivity and the seq-
defining ⇒ rule. Finally, rRr by reflexivity. The other cases cannot apply, as
in such cases p does not match the source of the conclusion of the seq-defining
⇒ rule.

3. The third condition never arises, since no entries in R are values. ��
From this we can use the congruence result to show that thunk(seq(seq(s, t), r)) ≈vc

thunk(seq(s, seq(t, r))), although it can be shown directly by adding appropriate
entries to our proposed bisimulation relation.

Example 27. In Example 4, seq(skip, s) ≈vc s for each s.

Proof. Let R denote the reflexive symmetric closure of {(seq(skip, s), s)}. We
show that R is a vc-bisimulation.

1. Suppose sRt and s
a−→ s�.

The case that s = t is trivial.
Next, suppose t = seq(skip, s). Then t ⇒ s

a−→ s�. By saturation, t
a−→ s�. Since

s�Rs� we are done.
Finally, suppose s = seq(skip, s). The final rule in s

a−→ s� must be saturation,
which can be dealt with generically.

2. Suppose s ⇒ s� and sRt.
If s = t the case is trivial.
If t = seq(skip, s) then t ⇒ s ⇒ s� so take t� = s� and we are done by
reflexivity of ⇒.
If s = seq(skip, t) then we consider the proof s ⇒ s�. Cases of transitivity,
reflexivity and precongruence are dealt generically. The final case is that
s� = t, in which case take t� = t and use reflexivity of ⇒.



Modular Bisimulation Theory for Computations and Values 25

3. Suppose sRt where s is a value. Then either t = s (in which case we are done
trivially using reflexivity of R and ⇒) or t = seq(skip, s), since seq(skip, t) is
not a value. Then t ⇒ s, and we are done by reflexivity of R and ⇒. ��

The above arguments can also show the corresponding modular bisimulations in
the MSOS setting. We have formalised them in Coq along with the right unit
law for seq, at cs.swan.ac.uk/~csmdc/bisim-examples.v. In the remaining
examples, we formulate and prove modular MSOS bisimulations.

Example 28. In any disjoint extension of Ecatch,print, the following equation holds:

catch(print(v), x) ≈msos print(v)

Proof. Let R be the reflexive symmetric closure of {(catch(print(v), x), print(v))}∪
{(catch(skip, x), skip)}. We show that R is an MSOS bisimulation:

1. Suppose s
L−→ s� and s R t. Reflexivity of R can be dealt with in a generic

manner.
If sRt and s

L−→ s� using a built-in rule, we can proceed as in Example 26
formally using an induction over the proof derivation. The only remaining
cases are the new saturation rules in Definition 11.
In the case of the read-saturation rule, suppose L = {x = x, . . .} and
x ⇒ z and s

{x=z,...}−−−−−−→ s�. Then by induction t
{x=z,...1}−−−−−−→ t� with s�Rt� and

writes(. . .) R writes(. . .1) and so by applying the same read-saturation rule

t
{x=x,...1}−−−−−−−→ t� as required.

In the case of the write-saturation rule, suppose L = {x� = x, . . .} and
s

{x�=z,...}−−−−−−→ s� and z ⇒ x. Then by induction t
{x�=z1,...1}−−−−−−−−→ t� with s� R t�,

z R z1 and writes(. . .) R writes(. . .1). Since z R z1 and z ⇒ x, by induction

z1 ⇒ x1 with x R x1. By applying the write-saturation rule, t
{x�=x1,...1}−−−−−−−−→ t�.

Since writes(L) R writes({x� = x1, . . .1}), we are done.
If s proceeds using a construct-specific rule and s = print(v) then s� =
skip and L is unobservable other than L(output�) = cons(v, nil). Then t =

catch(print(v), x) and t
L−→ catch(skip, x) = t�, and skip R t�.

If s proceeds using a construct-specific rule and s = catch(print(v), x) then L is
unobservable other than L(output�) = cons(v, nil) and s� is s� = catch(skip, x)

or s� = skip (using saturation). Then t = print(v)
L−→ skip = t�. Then s�Rt�.

2. If s R t and s ⇒ s� then we consider ⇒. Instances of precongruence (in v or
x) can be matched in t, and reflexivity and transitivity can be dealt with
in the standard manner. Otherwise, we must have s = catch(skip, x) and
s� = skip. But then t = skip, and we are done using reflexivity of R.

3. If v R s then v = skip, s = catch(skip, x) and so s ⇒ v as required. ��

Example 29. In any disjoint extension of Eseq,atomic,assign,deref , the following holds:

atomic(seq(assign(x, v), deref(x))) ≈msos atomic(seq(assign(x, v), v))



26 Churchill, Mosses

Proof. Let R denote the reflexive symmetric closure of

{(atomic(seq(assign(x, v), deref(x))), atomic(seq(assign(x, v), v)))}.

We show that R is an MSOS bisimulation.

1. If s
L−→ s� and s = atomic(seq(assign(x, v), deref(x)) a proof search finds the

following proof derivation:

assign(x, v)
L1−−−→ skip

seq(assign(x, v), deref(x))
L1−−−→ seq(skip, deref(x)) seq(skip, deref(x)) ⇒ deref(x)

seq(assign(x, v), deref(x))
L1−−−→ deref(x)

deref(x)
L2−−−→ v atomic(v)

−−−→ v

atomic(deref(x))
L2−−−→ v

atomic(seq(assign(x, v), deref(x)))
L−−→ v

where: reads(L1) = reads(L), L1 is unobservable except writes(L1)(store
�) =

update(L(store), x, v), L2 is unobservable with with (L1, L2) composable and L
their composition, so L is unobservable except L(store�) = update(L(store), x, v)
and s� = v. There are other derivations moving the skip rewrite, but these
place the same restrictions on L and s�.

The following proof shows that atomic(seq(assign(x, v), v))
L−→ s� also:

assign(x, v)
L1−−→ skip

seq(assign(x, v), v)
L1−−→ seq(skip, v) seq(skip, v) ⇒ v

seq(assign(x, v), v)
L1−−→ v atomic(v)

L2−−→ v

atomic(seq(assign(x, v), v))
L−→ v

We are done by reflexivity of R.
There are additional derivations that use the read- or write- saturation
rule: entries in L can be rewritten. Each can be matched in the target
derivation. Note that any rewrite in the store component is a pointwise
rewrite for each variable. If the read/write-saturation rule rewrites the x entry
between the assign and the deref, then s� = v1 for some v1 with v ⇒ v1 and
L(store�) = update(L(store), x, v1). Such behaviour can be simulated in the
target derivation using (write-)saturation and congruence rules.
The symmetric case proceeds similarly, by exhaustive analysis of the proofs

of s
L−→ s�.

The reflexivity case is trivial.
2. The only ⇒ case is reflexivity, which holds trivially.
3. The only value case is reflexivity, which holds trivially. ��


