
Introduction
Ingredients
Validation

Conclusions

Component-Based Dynamic Semantics
for Caml Light

Martin Churchill, Peter D. Mosses
Swansea University

SLS Workshop, Cambridge
June 2013

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Component-based Semantics

Programming language semantics, via reusable components

I Reusable components = “funcons”
I Expanding collection of fundamental, independent symbols for

computational behaviour
I Each with (fixed) intuitive meaning + formal specification

I Language semantics = translation
I Mapping from programming language to funcons
I Language constructs decomposed into combination of funcons

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

...for Caml Light

We demonstrate the approach for Caml Light

I ≈ core of Standard ML

I ≈ a sublanguage of OCaml

I functional + imperative, algebraic data types, pattern
matching, exceptions, mutual recursion, . . .

Also studied by [Owens et al., ESOP 2008] (OCaml light),
[Charguéraud, ESOP 2013]

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Caml Light

type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
(* type 'a btree = Empty | Node of 'a * 'a btree * 'a btree *)

let rec member x btree =
 match btree with
 Empty -> false
 | Node(y, left, right) ->
 if x = y then true else
 if x < y then member x left else member x right;;
(* val member : 'a -> 'a btree -> bool = <fun> *)

let rec insert x btree =
 match btree with
 Empty -> Node(x, Empty, Empty)
 | Node(y, left, right) ->
 if x <= y then Node(y, insert x left, right)
 else Node(y, left, insert x right);;
(* val insert : 'a -> 'a btree -> 'a btree = <fun> *)

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Ingredients

caml light grammar

caml light reference manual

collection of funcons

plus:

I context-free translation : caml light grammar → funcons

I funcon specifications (via inductive rules)

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Examples

expr[[while E1 do E2 done]] =
seq(while-true(expr[[E1]], effect(expr[[E2]])), tuple-empty)

expr[[match E with P1 -> E1 ...]] =
apply(

prefer-over
(abs[[P1 -> E1 ...]],
abs(any, throw(’Match-failure’))),

expr[[E]])

key points:

I perspicuity + preciseness

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Ingredients

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Caml Light Grammar

abstract syntax + disambiguation

⇓
funcons

Expression based language (expr). Other main non terminals:

I patterns, types, let-bindings, . . .

(see html page)

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Caml Light Grammar

abstract syntax + disambiguation
⇓

funcons

Expression based language (expr). Other main non terminals:

I patterns, types, let-bindings, . . .

(see html page)

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Semantic Universe

Funcons partitioned into ‘sorts’

loosely describing kind of behaviour

e.g.:

I value – a terminated computation (includes int, boolean, ...)

I expr – an expression computes a value

I env – an environment is an identifier → value map

I decl – a declaration computes an environment

I abs – an abstraction computes a value, given a value

I patt – a pattern computes an environment, given a value

I . . .

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Some funcon signatures

apply(abs,value) : expr effect(expr) : comm
abs(patt,expr) : abs seq(comm,expr) : expr
any : patt while-true(expr,comm) : comm
prefer-over(abs,abs) : abs throw(exception) : expr

...
...

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Some funcon signatures (polymorphic)

apply(abs,value) : expr effect(X) : comm
abs(patt,expr) : abs seq(comm,X) : X
any : patt while-true(expr,comm) : comm
prefer-over(abs,abs) : abs throw(exception) : X

...
...

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Translation

abs[[simple-matching]] : abs
decl[[implementation]] : decl

decl[[let-bindings]] : decl
expr[[expr]] : expr

patt[[pattern]] : patt
value[[value]] : value

...

(see CBS file)

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Funcon specifications

Formally specified by:

I Inductive rules over small-step evaluation relation

Utilising:

I Modular SOS (MSOS) for treatment of environments, stores,
exceptions... [Mosses, JLAP 2004]

I Supports formal implicit propagation for unmentioned
components (each corresponds to a category)

I Concretely, we use I-MSOS notation
[Mosses and New, SOS 2008]

(see CSF)

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Some advanced features for scalability

Implicitly generated ‘patience rules’ (cf. strictness):

I scope(env,X) : X lifted to scope(decl,X) : X by

x → x ′

scope(x , y) → scope(x ′, y)

I lifts data operations to computations
e.g. int plus(int,int) : int to int plus(expr,expr) : expr
with arbitrary (possibly interleaved) argument evaluation

Second-order (parametrised) funcons:

I seq first evaluates arguments in left-to-right-order
e.g. seq int plus(expr,expr) : expr

I invert creates a pattern, inverting a particular data constructor

I . . .

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Some advanced features for scalability

Implicitly generated ‘patience rules’ (cf. strictness):

I scope(env,X) : X lifted to scope(decl,X) : X by

x → x ′

scope(x , y) → scope(x ′, y)

I lifts data operations to computations
e.g. int plus(int,int) : int to int plus(expr,expr) : expr
with arbitrary (possibly interleaved) argument evaluation

Second-order (parametrised) funcons:

I seq first evaluates arguments in left-to-right-order
e.g. seq int plus(expr,expr) : expr

I invert creates a pattern, inverting a particular data constructor

I . . .

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Validation

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Correctness – laws

How can we verify correctness of our semantics?

1. Proving funcon equivalence laws

I e.g. associativity, commutativity, . . .

I via (open) bisimulation techniques
[Mosses, Mousavi and Reniers, EXPRESS 2010]

I prove independently, just considering relevant rules

I equations are preserved when adding funcons
(and auxiliary entities)

I bisimilarity as a congruence
[Churchill and Mosses, FoSSaCS 2013]

I rule format, satisfied by all funcons used for Caml Light

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Correctness – prototyping

2. Testing (running programs according to semantics)

I Checks funcon specs + translation

I Translation – parsing programs + rewriting to funcon trees
I current prototype uses ASF+SDF, moving to more

contemporary tools

I Funcon specs

I funcon rules
generation−−−−−−→ Prolog rules

I alternatives: e.g. K [Roşu and Şerbănuţă, JLAP 2010]

⇒ run programs according to the semantics

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Caml-Light Tests

I Chap. 1 of OCaml manual gives examples, mostly Caml Light
I We can run all of these via semantics (few mins)

I runs program to yield final answer + entity trace

I Casper Bach Poulsen working on more efficient animation via
partial evaluation techniques [Bach Poulsen, SLS]

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Conclusions

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

In progress: static semantics (with Paolo Torrini)

Funcons:

I Each funcon has “static rules” over additional relations
– type inhabitance (:), subtyping (<), . . .

I MSOS framework for entities can also be used for static
semantics

Language translation:
I Single translation into funcons for static + dynamic aspects

I Additions to the translation for type expressions & definitions
I A few equations modified for Caml-Light specific typing

behaviour

I Mostly complete for Caml Light
I OCaml manual Chapter 1 examples work

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

In progress: static semantics (with Paolo Torrini)

Funcons:

I Each funcon has “static rules” over additional relations
– type inhabitance (:), subtyping (<), . . .

I MSOS framework for entities can also be used for static
semantics

Language translation:
I Single translation into funcons for static + dynamic aspects

I Additions to the translation for type expressions & definitions
I A few equations modified for Caml-Light specific typing

behaviour

I Mostly complete for Caml Light
I OCaml manual Chapter 1 examples work

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

Introduction
Ingredients
Validation

Conclusions

Conclusions

I Component-based semantics applied to: Caml Light language
I Dynamic semantics 4, static semantics on its way...

I Developed and tested CBS techniques on a small language
I including basic prototyping support for animating semantics

I Funcons in our rule format ⇒ bisimulation is a congruence
I Next steps:

I PLanCompS is now specifying C#, to prove the scalability of
our techinques.

Thank You.

Martin Churchill, Peter D. Mosses Component-Based Dynamic Semantics for Caml Light

	Introduction
	Ingredients
	Validation
	Conclusions

